IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v172y2022ics0167947322000548.html
   My bibliography  Save this article

A prior for record linkage based on allelic partitions

Author

Listed:
  • Betancourt, Brenda
  • Sosa, Juan
  • Rodríguez, Abel

Abstract

In database management, record linkage aims to identify multiple records that correspond to the same individual. Record linkage can be treated as a clustering problem in which one or more noisy database records are associated with a unique latent entity. In contrast to traditional clustering applications, a large number of clusters with a few observations per cluster is expected in this context. Hence, a new class of prior distributions based on allelic partitions is proposed for the small cluster setting of record linkage. The proposed prior facilitates the introduction of information about the cluster size distribution at different scales, and naturally enforces sublinear growth of the maximum cluster size – known as the microclustering property. In addition, a set of novel microclustering conditions are introduced in order to impose further constraints on the cluster sizes a priori. The performance of the proposed class of priors is evaluated using simulated data and three official statistics data sets. Moreover, different loss functions for optimal point estimation of the partitions are compared using decision-theoretical based approaches recently proposed in the literature.

Suggested Citation

  • Betancourt, Brenda & Sosa, Juan & Rodríguez, Abel, 2022. "A prior for record linkage based on allelic partitions," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:csdana:v:172:y:2022:i:c:s0167947322000548
    DOI: 10.1016/j.csda.2022.107474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322000548
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Roee Gutman & Christopher C. Afendulis & Alan M. Zaslavsky, 2013. "A Bayesian Procedure for File Linking to Analyze End-of-Life Medical Costs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 34-47, March.
    3. Mauricio Sadinle & Stephen E. Fienberg, 2013. "A Generalized Fellegi--Sunter Framework for Multiple Record Linkage With Application to Homicide Record Systems," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 385-397, June.
    4. Michel H. Hof & Anita C. Ravelli & Aeilko H. Zwinderman, 2017. "A Probabilistic Record Linkage Model for Survival Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1504-1515, October.
    5. Rebecca C. Steorts & Rob Hall & Stephen E. Fienberg, 2016. "A Bayesian Approach to Graphical Record Linkage and Deduplication," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1660-1672, October.
    6. Jeffrey W. Miller & Matthew T. Harrison, 2018. "Mixture Models With a Prior on the Number of Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 340-356, January.
    7. Mauricio Sadinle, 2017. "Bayesian Estimation of Bipartite Matchings for Record Linkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 600-612, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duncan Smith, 2020. "Re‐identification in the Absence of Common Variables for Matching," International Statistical Review, International Statistical Institute, vol. 88(2), pages 354-379, August.
    2. Daniel H. Weinberg & John M. Abowd & Robert F. Belli & Noel Cressie & David C. Folch & Scott H. Holan & Margaret C. Levenstein & Kristen M. Olson & Jerome P. Reiter & Matthew D. Shapiro & Jolene Smyth, 2017. "Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?," Working Papers 17-59r, Center for Economic Studies, U.S. Census Bureau.
    3. Bera Sabyasachi & Chatterjee Snigdhansu, 2020. "High dimensional, robust, unsupervised record linkage," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 123-143, August.
    4. Sabyasachi Bera & Snigdhansu Chatterjee, 2020. "High dimensional, robust, unsupervised record linkage," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 123-143, August.
    5. Thomas Stringham, 2022. "Fast Bayesian Record Linkage With Record-Specific Disagreement Parameters," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1509-1522, October.
    6. Vo, Thanh Huan & Chauvet, Guillaume & Happe, André & Oger, Emmanuel & Paquelet, Stéphane & Garès, Valérie, 2023. "Extending the Fellegi-Sunter record linkage model for mixed-type data with application to the French national health data system," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    7. John M. Abowd & Joelle Abramowitz & Margaret C. Levenstein & Kristin McCue & Dhiren Patki & Trivellore Raghunathan & Ann M. Rodgers & Matthew D. Shapiro & Nada Wasi & Dawn Zinsser, 2021. "Finding Needles in Haystacks: Multiple-Imputation Record Linkage Using Machine Learning," Working Papers 21-35, Center for Economic Studies, U.S. Census Bureau.
    8. Li‐Chun Zhang & Tiziana Tuoto, 2021. "Linkage‐data linear regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 522-547, April.
    9. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    10. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    11. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    12. Xing Qin & Shuangge Ma & Mengyun Wu, 2023. "Two‐level Bayesian interaction analysis for survival data incorporating pathway information," Biometrics, The International Biometric Society, vol. 79(3), pages 1761-1774, September.
    13. Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.
    14. Liu, Jie & Ye, Zifeng & Chen, Kun & Zhang, Panpan, 2024. "Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    15. Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 13/19, Monash University, Department of Econometrics and Business Statistics.
    16. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    17. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    19. Bakker Bart F.M. & Heijden Peter G.M. van der & Scholtus Sander, 2015. "Preface," Journal of Official Statistics, Sciendo, vol. 31(3), pages 349-355, September.
    20. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:172:y:2022:i:c:s0167947322000548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.