IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v158y2021ics0167947321000219.html
   My bibliography  Save this article

Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures

Author

Listed:
  • Kasianova, Ksenia
  • Kelbert, Mark
  • Mozgunov, Pavel

Abstract

In many rare disease Phase II clinical trials, two objectives are of interest to an investigator: maximising the statistical power and maximising the number of patients responding to the treatment. These two objectives are competing, therefore, clinical trial designs offering a balance between them are needed. Recently, it was argued that response-adaptive designs such as families of multi-arm bandit (MAB) methods could provide the means for achieving this balance. Furthermore, response-adaptive designs based on a concept of context-dependent (weighted) information criteria were recently proposed with a focus on Shannon’s differential entropy. The information-theoretic designs based on the weighted Renyi, Tsallis and Fisher informations are also proposed. Due to built-in parameters of these novel designs, the balance between the statistical power and the number of patients that respond to the treatment can be tuned explicitly. The asymptotic properties of these measures are studied in order to construct intuitive criteria for arm selection. A comprehensive simulation study shows that using the exact criteria over asymptotic ones or using information measures with more parameters, namely Renyi and Tsallis entropies, brings no sufficient gain in terms of the power or proportion of patients allocated to superior treatments. The proposed designs based on information-theoretical criteria are compared to several alternative approaches. For example, via tuning of the built-in parameter, one can find designs with power comparable to the fixed equal randomisation’s but a greater number of patients responded in the trials.

Suggested Citation

  • Kasianova, Ksenia & Kelbert, Mark & Mozgunov, Pavel, 2021. "Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000219
    DOI: 10.1016/j.csda.2021.107187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321000219
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Williamson, S. Faye & Jacko, Peter & Villar, Sofía S. & Jaki, Thomas, 2017. "A Bayesian adaptive design for clinical trials in rare diseases," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 136-153.
    2. Sofía S. Villar & William F. Rosenberger, 2018. "Covariate†adjusted response†adaptive randomization for multi†arm clinical trials using a modified forward looking Gittins index rule," Biometrics, The International Biometric Society, vol. 74(1), pages 49-57, March.
    3. repec:bla:biomet:v:71:y:2015:i:4:p:969-978 is not listed on IDEAS
    4. Graham J. G. Upton, 1992. "Fisher's Exact Test," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 155(3), pages 395-402, May.
    5. P. Sebastiani & H. P. Wynn, 2000. "Maximum entropy sampling and optimal Bayesian experimental design," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 145-157.
    6. Pavel Mozgunov & Thomas Jaki, 2019. "An information theoretic phase I–II design for molecularly targeted agents that does not require an assumption of monotonicity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(2), pages 347-367, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen E. Chick & Noah Gans & Özge Yapar, 2022. "Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions," Management Science, INFORMS, vol. 68(7), pages 4919-4938, July.
    2. Andres Alban & Stephen E. Chick & Martin Forster, 2023. "Value-Based Clinical Trials: Selecting Recruitment Rates and Trial Lengths in Different Regulatory Contexts," Management Science, INFORMS, vol. 69(6), pages 3516-3535, June.
    3. Helen Yvette Barnett & Sofía S. Villar & Helena Geys & Thomas Jaki, 2023. "A novel statistical test for treatment differences in clinical trials using a response‐adaptive forward‐looking Gittins Index Rule," Biometrics, The International Biometric Society, vol. 79(1), pages 86-97, March.
    4. Williamson, S. Faye & Jacko, Peter & Jaki, Thomas, 2022. "Generalisations of a Bayesian decision-theoretic randomisation procedure and the impact of delayed responses," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    5. Waverly Wei & Xinwei Ma & Jingshen Wang, 2023. "Fair Adaptive Experiments," Papers 2310.16290, arXiv.org.
    6. Pavel Mozgunov & Thomas Jaki, 2020. "An information theoretic approach for selecting arms in clinical trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1223-1247, December.
    7. Hessa Al-Thani & Jon Lee, 2020. "An R Package for Generating Covariance Matrices for Maximum-Entropy Sampling from Precipitation Chemistry Data," SN Operations Research Forum, Springer, vol. 1(3), pages 1-21, September.
    8. Adam C. Sales & Ben B. Hansen, 2020. "Limitless Regression Discontinuity," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 143-174, April.
    9. Yanis Tazi & Juan E. Arango-Ossa & Yangyu Zhou & Elsa Bernard & Ian Thomas & Amanda Gilkes & Sylvie Freeman & Yoann Pradat & Sean J. Johnson & Robert Hills & Richard Dillon & Max F. Levine & Daniel Le, 2022. "Unified classification and risk-stratification in Acute Myeloid Leukemia," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
    11. Kim, Taejin & Lee, Gueseok & Youn, Byeng D., 2019. "PHM experimental design for effective state separation using Jensen–Shannon divergence," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    12. Jeffrey A. Mills & Gary Cornwall & Beau A. Sauley & Jeffrey R. Strawn, 2018. "Improving the Analysis of Randomized Controlled Trials: a Posterior Simulation Approach," BEA Working Papers 0157, Bureau of Economic Analysis.
    13. Sofía S. Villar & William F. Rosenberger, 2018. "Covariate†adjusted response†adaptive randomization for multi†arm clinical trials using a modified forward looking Gittins index rule," Biometrics, The International Biometric Society, vol. 74(1), pages 49-57, March.
    14. Han, Cong & Chaloner, Kathryn, 2004. "A note on optimal designs for two or more treatment groups," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 81-89, August.
    15. Miroslav Ferenèak & Dušan Dobromirov & Mladen Radišiæ & Aleksandar Takaèi, 2018. "Aversion to a sure loss: turning investors into gamblers," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(2), pages 537-557.
    16. Mavrogonatou, Lida & Sun, Yuxuan & Robertson, David S. & Villar, Sofía S., 2022. "A comparison of allocation strategies for optimising clinical trial designs under variance heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    17. Yang, Siluo & Zheng, Mengxue & Yu, Yonghao & Wolfram, Dietmar, 2021. "Are Altmetric.com scores effective for research impact evaluation in the social sciences and humanities?," Journal of Informetrics, Elsevier, vol. 15(1).
    18. Rusin, K. & Wróblewski, W. & Rulik, S., 2021. "Efficiency based optimization of a Tesla turbine," Energy, Elsevier, vol. 236(C).
    19. Rodriguez, Sergio & Ludkovski, Michael, 2020. "Probabilistic bisection with spatial metamodels," European Journal of Operational Research, Elsevier, vol. 286(2), pages 588-603.
    20. Eugene Seneta & Geoffrey Berry & Petra Macaskill, 1999. "Adjustment to Lancaster's Mid-P," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 229-240, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.