Explicit-duration Hidden Markov Models for quantum state estimation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2021.107183
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ole E. Barndorff‐Nielsen & Richard D. Gill & Peter E. Jupp, 2003. "On quantum statistical inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 775-804, November.
- Bulla, Jan & Bulla, Ingo, 2006. "Stylized facts of financial time series and hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2192-2209, December.
- James M McFarland & Thomas T G Hahn & Mayank R Mehta, 2011. "Explicit-Duration Hidden Markov Model Inference of UP-DOWN States from Continuous Signals," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-16, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
- Hunt, Julien & Devolder, Pierre, 2011. "Semi Markov regime switching interest rate models and minimal entropy measure," LIDAM Discussion Papers ISBA 2011010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Wang, Shixuan & Gupta, Rangan & Zhang, Yue-Jun, 2021.
"Bear, Bull, Sidewalk, and Crash: The Evolution of the US Stock Market Using Over a Century of Daily Data,"
Finance Research Letters, Elsevier, vol. 43(C).
- Shixuan Wang & Rangan Gupta & Yue-Jun Zhang, 2020. "Bear, Bull, Sidewalk, and Crash: The Evolution of the US Stock Market Using Over a Century of Daily Data," Working Papers 202097, University of Pretoria, Department of Economics.
- Vlad Stefan Barbu & Guglielmo D’Amico & Thomas Gkelsinis, 2021. "Sequential Interval Reliability for Discrete-Time Homogeneous Semi-Markov Repairable Systems," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
- Holzmann, Hajo & Schwaiger, Florian, 2016. "Testing for the number of states in hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 318-330.
- Yizhan Shu & Chenyu Yu & John M. Mulvey, 2024. "Downside Risk Reduction Using Regime-Switching Signals: A Statistical Jump Model Approach," Papers 2402.05272, arXiv.org, revised Sep 2024.
- Jupp, P.E., 2010. "A van Trees inequality for estimators on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1814-1825, September.
- Jan Bulla, 2010.
"Hidden Markov models with t components. Increased persistence and other aspects,"
Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 459-475.
- Bulla, Jan, 2009. "Hidden Markov models with t components. Increased persistence and other aspects," MPRA Paper 21830, University Library of Munich, Germany.
- Vladislav Kargin, 2004. "Coordination Games with Quantum Information," Game Theory and Information 0409006, University Library of Munich, Germany.
- Laurie Davies & Walter Kraemer, 2016.
"Stylized Facts and Simulating Long Range Financial Data,"
CESifo Working Paper Series
5796, CESifo.
- Laurie Davies & Walter Kramer, 2016. "Stylized Facts and Simulating Long Range Financial Data," Papers 1612.05229, arXiv.org.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- Heller, B. & Wang, M., 2007. "Posterior distribution for negative binomial parameter p using a group invariant prior," Statistics & Probability Letters, Elsevier, vol. 77(15), pages 1542-1548, September.
- Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
- Eric Ghysels & Jack Morgan, 2024. "On Quantum Ambiguity and Potential Exponential Computational Speed-Ups to Solving Dynamic Asset Pricing Models," Papers 2405.01479, arXiv.org, revised May 2024.
- Sofia Ruiz-Suarez & Vianey Leos-Barajas & Juan Manuel Morales, 2022. "Hidden Markov and Semi-Markov Models When and Why are These Models Useful for Classifying States in Time Series Data?," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 339-363, June.
- Andrea Arfè & Stefano Peluso & Pietro Muliere, 2021. "The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 1-15, April.
- Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
- Milan Kumar Das & Anindya Goswami & Sharan Rajani, 2019. "Inference of Binary Regime Models with Jump Discontinuities," Papers 1910.10606, arXiv.org, revised Mar 2022.
- Elie Bouri & Rangan Gupta & Shixuan Wang, 2019. "Contagion between Stock and Real Estate Markets: International Evidence from a Local Gaussian Correlation Approach," Working Papers 201917, University of Pretoria, Department of Economics.
More about this item
Keywords
Hidden Markov Models; Forward–backward algorithm; Quantum statistics; Kernel estimation; Viterbi algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000177. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.