IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v154y2021ics0167947320301742.html
   My bibliography  Save this article

Prediction of non-stationary response functions using a Bayesian composite Gaussian process

Author

Listed:
  • Davis, Casey B.
  • Hans, Christopher M.
  • Santner, Thomas J.

Abstract

The modeling and prediction of functions that can exhibit non-stationarity characteristics is important in many applications; for example, this is often the case for simulator output. One approach to predict a function with unknown stationarity properties is to model it as a draw from a flexible stochastic process that can produce stationary or non-stationary realizations. One such model is the composite Gaussian process (CGP) which expresses the large-scale (global) trends of the output and the small-scale (local) adjustments to the global trend as independent Gaussian processes; an extension of the CGP model can produce realizations with non-constant variance by allowing the variance of the local process to vary over the input space. A new, Bayesian extension of a global-trend plus local-trend model is proposed that also allows measurement errors. In contrast to the original CGP model, the new Bayesian CGP model introduces a weight function to allow the total process variability to be apportioned between the large- and small-scale processes. The proposed prior distributions ensure that the fitted global mean is smoother than the local deviations, a feature built into the CGP model. The log of the process variance for the Bayesian CGP is modeled as a Gaussian process to provide a flexible mechanism for handling variance functions that vary across the input space. A Markov chain Monte Carlo algorithm is proposed that provides posterior estimates of the parameters for the Bayesian CGP. It also yields predictions of the output and quantifies uncertainty about the predictions. The method is illustrated using both analytic and real-data examples.

Suggested Citation

  • Davis, Casey B. & Hans, Christopher M. & Santner, Thomas J., 2021. "Prediction of non-stationary response functions using a Bayesian composite Gaussian process," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:csdana:v:154:y:2021:i:c:s0167947320301742
    DOI: 10.1016/j.csda.2020.107083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301742
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
    2. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    3. Gramacy, Robert B & Lee, Herbert K. H, 2008. "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1119-1130.
    4. Robert Lempert & Michael Schlesinger & Steven Bankes & Natalia Andronova, 2000. "The Impacts of Climate Variability on Near-Term Policy Choices and the Value of Information," Climatic Change, Springer, vol. 45(1), pages 129-161, April.
    5. Gramacy, Robert B., 2007. "tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i09).
    6. Gramacy, Robert B. & Taddy, Matthew Alan, 2010. "Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i06).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szarek, Dawid & Maraj-Zygmąt, Katarzyna & Sikora, Grzegorz & Krapf, Diego & Wyłomańska, Agnieszka, 2022. "Statistical test for anomalous diffusion based on empirical anomaly measure for Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erickson, Collin B. & Ankenman, Bruce E. & Sanchez, Susan M., 2018. "Comparison of Gaussian process modeling software," European Journal of Operational Research, Elsevier, vol. 266(1), pages 179-192.
    2. Horiguchi, Akira & Pratola, Matthew T. & Santner, Thomas J., 2021. "Assessing variable activity for Bayesian regression trees," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    4. Cole, D. Austin & Gramacy, Robert B. & Ludkovski, Mike, 2022. "Large-scale local surrogate modeling of stochastic simulation experiments," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    5. Waley W. J. Liang & Herbert K. H. Lee, 2019. "Bayesian nonstationary Gaussian process models via treed process convolutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 797-818, September.
    6. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    7. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    8. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    9. MacDonald, Blake & Ranjan, Pritam & Chipman, Hugh, 2015. "GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i12).
    10. Daniel W. Gladish & Daniel E. Pagendam & Luk J. M. Peeters & Petra M. Kuhnert & Jai Vaze, 2018. "Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 39-62, March.
    11. Pulong Ma & Georgios Karagiannis & Bledar A. Konomi & Taylor G. Asher & Gabriel R. Toro & Andrew T. Cox, 2022. "Multifidelity computer model emulation with high‐dimensional output: An application to storm surge," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 861-883, August.
    12. Bolin, David & Wallin, Jonas & Lindgren, Finn, 2019. "Latent Gaussian random field mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 80-93.
    13. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    14. Liukkonen, Lauri & Ayllón, Daniel & Kunnasranta, Mervi & Niemi, Marja & Nabe-Nielsen, Jacob & Grimm, Volker & Nyman, Anna-Maija, 2018. "Modelling movements of Saimaa ringed seals using an individual-based approach," Ecological Modelling, Elsevier, vol. 368(C), pages 321-335.
    15. Samuel W. Malone & Robert B. Gramacy & Enrique Ter Horst, 2016. "Timing Foreign Exchange Markets," Econometrics, MDPI, vol. 4(1), pages 1-23, March.
    16. Savitsky, Terrance D., 2016. "Bayesian Nonparametric Mixture Estimation for Time-Indexed Functional Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i02).
    17. Grant Hutchings & Bruno Sansó & James Gattiker & Devin Francom & Donatella Pasqualini, 2023. "Comparing emulation methods for a high‐resolution storm surge model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
    18. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    19. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    20. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:154:y:2021:i:c:s0167947320301742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.