IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v138y2019icp107-125.html
   My bibliography  Save this article

Markov Chain Monte Carlo estimation of spatial dynamic panel models for large samples

Author

Listed:
  • LeSage, James P.
  • Chih, Yao-Yu
  • Vance, Colin

Abstract

Focus is on efficient estimation of a dynamic space–time panel data model that incorporates spatial dependence, temporal dependence, as well as space–time covariance and can be implemented where there are a large number of spatial units and time periods. Quasi-maximum likelihood (QML) estimation in cases involving large samples poses computational challenges because optimizing the (log) likelihood requires: (1) evaluating the log-determinant of a large matrix that appears in the likelihood, (2) imposing stability restrictions on parameters reflecting space–time dynamics, and (3) simulations to produce an empirical distribution of the partial derivatives used to interpret model estimates that require numerous inversions of large matrices.

Suggested Citation

  • LeSage, James P. & Chih, Yao-Yu & Vance, Colin, 2019. "Markov Chain Monte Carlo estimation of spatial dynamic panel models for large samples," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 107-125.
  • Handle: RePEc:eee:csdana:v:138:y:2019:i:c:p:107-125
    DOI: 10.1016/j.csda.2019.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319300878
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Parent, Olivier & LeSage, James P., 2010. "A spatial dynamic panel model with random effects applied to commuting times," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 633-645, June.
    2. Gerhard Clemenz & Klaus Gugler, 2009. "Locational choice and price competition: some empirical results for the austrian retail gasoline market," Studies in Empirical Economics, in: Giuseppe Arbia & Badi H. Baltagi (ed.), Spatial Econometrics, pages 223-244, Springer.
    3. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    4. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2012. "Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration," Journal of Econometrics, Elsevier, vol. 167(1), pages 16-37.
    5. Nicolas DEBARSY (CERPE De Namur) & Cem ERTUR & James P. LeSAGE, 2010. "Interpreting Dynamic Space-Time Panel Data Models," LEO Working Papers / DR LEO 800, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    6. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    7. L W Hepple, 1995. "Bayesian Techniques in Spatial and Network Econometrics: 2. Computational Methods and Algorithms," Environment and Planning A, , vol. 27(4), pages 615-644, April.
    8. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.
    9. Alex Kihm & Nolan Ritter & Colin Vance, 2016. "Is the German Retail Gasoline Market Competitive? A Spatial-Temporal Analysis Using Quantile Regression," Land Economics, University of Wisconsin Press, vol. 92(4), pages 718-736.
    10. James P. LeSage & R. Kelley Pace, 2018. "Spatial econometric Monte Carlo studies: raising the bar," Empirical Economics, Springer, vol. 55(1), pages 17-34, August.
    11. Parent, Olivier & LeSage, James P., 2012. "Spatial dynamic panel data models with random effects," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 727-738.
    12. Lung-fei Lee & Jihai Yu, 2012. "QML Estimation of Spatial Dynamic Panel Data Models with Time Varying Spatial Weights Matrices," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 31-74, March.
    13. Barron, John M. & Taylor, Beck A. & Umbeck, John R., 2004. "Number of sellers, average prices, and price dispersion," International Journal of Industrial Organization, Elsevier, vol. 22(8-9), pages 1041-1066, November.
    14. L W Hepple, 1995. "Bayesian Techniques in Spatial and Network Econometrics: 1. Model Comparison and Posterior Odds," Environment and Planning A, , vol. 27(3), pages 447-469, March.
    15. Lee, Lung-fei & Yu, Jihai, 2010. "A Spatial Dynamic Panel Data Model With Both Time And Individual Fixed Effects," Econometric Theory, Cambridge University Press, vol. 26(2), pages 564-597, April.
    16. LeSage, James P. & Vance, Colin & Chih, Yao-Yu, 2017. "A Bayesian heterogeneous coefficients spatial autoregressive panel data model of retail fuel duopoly pricing," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 46-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    2. Manfred M. Fischer & James P. LeSage, 2020. "Network dependence in multi-indexed data on international trade flows," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-26, December.
    3. Bergantino, Angela S. & Capozza, Claudia & Intini, Mario, 2020. "Empirical investigation of retail fuel pricing: The impact of spatial interaction, competition and territorial factors," Energy Economics, Elsevier, vol. 90(C).
    4. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    5. Burnett, J. Wesley & Lacombe, Donald J. & Wallander, Steven, . "Spatial and Temporal Spillovers in US Cropland Values," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 49(1).
    6. Meseret Chanieabate & Hai He & Chuyue Guo & Betelhem Abrahamgeremew & Yuanji Huang, 2023. "Examining the Relationship between Transportation Infrastructure, Urbanization Level and Rural-Urban Income Gap in China," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    7. Edoardo Baldoni & Roberto Esposti, 2021. "Agricultural Productivity in Space: an Econometric Assessment Based on Farm‐Level Data," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1525-1544, August.
    8. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2023. "Robust dynamic space–time panel data models using $$\varepsilon $$ ε -contamination: an application to crop yields and climate change," Empirical Economics, Springer, vol. 64(6), pages 2475-2509, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taşpınar, Süleyman & Doğan, Osman & Bera, Anil K., 2017. "GMM gradient tests for spatial dynamic panel data models," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 65-88.
    2. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    3. Lee, Lung-fei & Yu, Jihai, 2015. "Estimation of fixed effects panel regression models with separable and nonseparable space–time filters," Journal of Econometrics, Elsevier, vol. 184(1), pages 174-192.
    4. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    5. Jin, Fei & Lee, Lung-fei & Yu, Jihai, 2020. "First difference estimation of spatial dynamic panel data models with fixed effects," Economics Letters, Elsevier, vol. 189(C).
    6. Debarsy, Nicolas & Dossougoin, Cyrille & Ertur, Cem & Gnabo, Jean-Yves, 2018. "Measuring sovereign risk spillovers and assessing the role of transmission channels: A spatial econometrics approach," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 21-45.
    7. Lee, Lung-fei & Yu, Jihai, 2014. "Efficient GMM estimation of spatial dynamic panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 180(2), pages 174-197.
    8. Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.
    9. Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
    10. Ciccarelli, Carlo & Elhorst, J.Paul, 2018. "A dynamic spatial econometric diffusion model with common factors: The rise and spread of cigarette consumption in Italy," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 131-142.
    11. Harry H. Kelejian & Gianfranco Piras, 2016. "A J test for dynamic panel model with fixed effects, and nonparametric spatial and time dependence," Empirical Economics, Springer, vol. 51(4), pages 1581-1605, December.
    12. Taspinar, Suleyman & Dogan, Osman & Bera, Anil K., 2017. "GMM Gradient Tests for Spatial Dynamic Panel Data Models," MPRA Paper 82830, University Library of Munich, Germany.
    13. Parent, Olivier & LeSage, James P., 2012. "Spatial dynamic panel data models with random effects," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 727-738.
    14. repec:rri:wpaper:201303 is not listed on IDEAS
    15. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    16. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    17. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    18. Triki, Mohamed Bilel, 2019. "The Italian wage curve revisited: A local and spatial cointegration," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 73-90.
    19. Fingleton, Bernard & Szumilo, Nikodem, 2019. "Simulating the impact of transport infrastructure investment on wages: A dynamic spatial panel model approach," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 148-164.
    20. Júlia Gallego Ziero Uhr & André Luis Squarize Chagas, Daniel de Abreu Pereira Uhr, Renan Porn Peres, 2017. "A study on environmental infractions for Brazilian municipalities: a spatial dynamic panel approach," Working Papers, Department of Economics 2017_13, University of São Paulo (FEA-USP).
    21. Niu, Honglei & Lekse, William, 2018. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-31.

    More about this item

    Keywords

    Spatial; Time dependence; Dynamic panels; Log-marginal likelihood;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D40 - Microeconomics - - Market Structure, Pricing, and Design - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:138:y:2019:i:c:p:107-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.