IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v107y2017icp92-106.html
   My bibliography  Save this article

Robust estimators of accelerated failure time regression with generalized log-gamma errors

Author

Listed:
  • Agostinelli, Claudio
  • Locatelli, Isabella
  • Marazzi, Alfio
  • Yohai, Víctor J.

Abstract

The generalized log-gamma (GLG) model is a very flexible family of distributions to analyze datasets in many different areas of science and technology. Estimators are proposed which are simultaneously highly robust and highly efficient for the parameters of a GLG distribution in the presence of censoring. Estimators with the same properties for accelerated failure time models with censored observations and error distribution belonging to the GLG family are also introduced. It is proven that the proposed estimators are asymptotically fully efficient and the maximum mean square error is examined using Monte Carlo simulations. The simulations confirm that the proposed estimators are highly robust and highly efficient for a finite sample size. Finally, the benefits of the proposed estimators in applications are illustrated with the help of two real datasets.

Suggested Citation

  • Agostinelli, Claudio & Locatelli, Isabella & Marazzi, Alfio & Yohai, Víctor J., 2017. "Robust estimators of accelerated failure time regression with generalized log-gamma errors," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 92-106.
  • Handle: RePEc:eee:csdana:v:107:y:2017:i:c:p:92-106
    DOI: 10.1016/j.csda.2016.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316302390
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianguo Sun & Qiming Liao & Marcello Pagano, 1999. "Regression Analysis of Doubly Censored Failure Time Data with Applications to AIDS Studies," Biometrics, The International Biometric Society, vol. 55(3), pages 909-914, September.
    2. Ortega, Edwin M. M. & Bolfarine, Heleno & Paula, Gilberto A., 2003. "Influence diagnostics in generalized log-gamma regression models," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 165-186, February.
    3. Agostinelli, Claudio & Marazzi, Alfio & Yohai, Víctor J. & Randriamiharisoa, Alex, 2016. "Robust Estimation of the Generalized Loggamma Model: The R Package robustloggamma," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i07).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    2. Roger Tovar-Falón & Guillermo Martínez-Flórez & Heleno Bolfarine, 2022. "Modelling Asymmetric Data by Using the Log-Gamma-Normal Regression Model," Mathematics, MDPI, vol. 10(7), pages 1-16, April.
    3. Guillermo Martínez-Flórez & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2021. "Flexible Log-Linear Birnbaum–Saunders Model," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    4. Leiva, Victor & Barros, Michelli & Paula, Gilberto A. & Galea, Manuel, 2007. "Influence diagnostics in log-Birnbaum-Saunders regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5694-5707, August.
    5. Carlos A. Dos Santos & Daniele C. T. Granzotto & Vera L. D. Tomazella & Francisco Louzada, 2018. "Hierarchical Transmuted Log-Logistic Model: A Subjective Bayesian Analysis," JRFM, MDPI, vol. 11(1), pages 1-12, March.
    6. Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
    7. Hugo Salinas & Hassan Bakouch & Najla Qarmalah & Guillermo Martínez-Flórez, 2023. "A Flexible Class of Two-Piece Normal Distribution with a Regression Illustration to Biaxial Fatigue Data," Mathematics, MDPI, vol. 11(5), pages 1-14, March.
    8. Peijie Wang & Xingwei Tong & Jianguo Sun, 2018. "A semiparametric regression cure model for doubly censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 492-508, July.
    9. Hashimoto, Elizabeth M. & Ortega, Edwin M.M. & Paula, Gilberto A. & Barreto, Mauricio L., 2011. "Regression models for grouped survival data: Estimation and sensitivity analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 993-1007, February.
    10. Silva, Giovana Oliveira & Ortega, Edwin M.M. & Cancho, Vicente G. & Barreto, Mauricio Lima, 2008. "Log-Burr XII regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3820-3842, March.
    11. Fabio, Lizandra C. & Paula, Gilberto A. & Castro, Mário de, 2012. "A Poisson mixed model with nonnormal random effect distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1499-1510.
    12. Wei Pan, 2001. "A Multiple Imputation Approach to Regression Analysis for Doubly Censored Data with Application to AIDS Studies," Biometrics, The International Biometric Society, vol. 57(4), pages 1245-1250, December.
    13. Liuquan Sun & Yang-jin Kim & Jianguo Sun, 2004. "Regression Analysis of Doubly Censored Failure Time Data Using the Additive Hazards Model," Biometrics, The International Biometric Society, vol. 60(3), pages 637-643, September.
    14. Fang, Hong-Bin & Sun, Jianguo, 2001. "Consistency of nonparametric maximum likelihood estimation of a distribution function based on doubly interval-censored failure time data," Statistics & Probability Letters, Elsevier, vol. 55(3), pages 311-318, December.
    15. Juliana Fachini & Edwin Ortega & Francisco Louzada-Neto, 2008. "Influence diagnostics for polyhazard models in the presence of covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(4), pages 413-433, October.
    16. Hashimoto, Elizabeth M. & Ortega, Edwin M.M. & Cancho, Vicente G. & Cordeiro, Gauss M., 2010. "The log-exponentiated Weibull regression model for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1017-1035, April.
    17. Gladys Barriga & Francisco Louzada-Neto & Edwin Ortega & Vicente Cancho, 2010. "A bivariate regression model for matched paired survival data: local influence and residual analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 477-495, November.
    18. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine & Celso R. B. Cabral, 2017. "Linear censored regression models with scale mixtures of normal distributions," Statistical Papers, Springer, vol. 58(1), pages 247-278, March.
    19. Lucia Santana & Filidor Vilca & V�ctor Leiva, 2011. "Influence analysis in skew-Birnbaum--Saunders regression models and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1633-1649, July.
    20. Edwin Ortega & Fernanda Rizzato & Clarice Demétrio, 2009. "The generalized log-gamma mixture model with covariates: local influence and residual analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(3), pages 305-331, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:107:y:2017:i:c:p:92-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.