IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v104y2016icp148-168.html
   My bibliography  Save this article

Bayesian estimation of the tail index of a heavy tailed distribution under random censoring

Author

Listed:
  • Ameraoui, Abdelkader
  • Boukhetala, Kamal
  • Dupuy, Jean-François

Abstract

Bayesian estimation of the tail index of a heavy-tailed distribution is addressed when data are randomly right-censored. Maximum a posteriori and mean posterior estimators are constructed for various prior distributions of the tail index. Convergence of the posterior distribution of the tail index to a Gaussian distribution is established. Finite-sample properties of the proposed estimators are investigated via simulations. Tail index estimation requires selecting an appropriate threshold for constructing relative excesses. A Monte Carlo procedure is proposed for tackling this issue. Finally, the proposed estimators are illustrated on a medical dataset.

Suggested Citation

  • Ameraoui, Abdelkader & Boukhetala, Kamal & Dupuy, Jean-François, 2016. "Bayesian estimation of the tail index of a heavy tailed distribution under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 148-168.
  • Handle: RePEc:eee:csdana:v:104:y:2016:i:c:p:148-168
    DOI: 10.1016/j.csda.2016.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301463
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    2. Cabras, Stefano & Castellanos, María Eugenia, 2011. "A Bayesian Approach for Estimating Extreme Quantiles Under a Semiparametric Mixture Model," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 87-106, May.
    3. Zellner, Arnold, 1996. "Models, prior information, and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 75(1), pages 51-68, November.
    4. So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beirlant, J. & Maribe, G. & Verster, A., 2018. "Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 114-122.
    2. Kapil Kumar, 2018. "Classical and Bayesian estimation in log-logistic distribution under random censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(2), pages 440-451, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    2. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    3. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    6. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    7. Allen, Michael R. & Datta, Somnath, 1999. "Estimation of the index parameter for autoregressive data using the estimated innovations," Statistics & Probability Letters, Elsevier, vol. 41(3), pages 315-324, February.
    8. Hondroyiannis, George & Swamy, P. A. V. B. & Tavlas, George S., 2000. "Is the Japanese economy in a liquidity trap?," Economics Letters, Elsevier, vol. 66(1), pages 17-23, January.
    9. Phornchanok Cumperayot & Casper G. de Vries, 2006. "Large Swings in Currencies driven by Fundamentals," Tinbergen Institute Discussion Papers 06-086/2, Tinbergen Institute.
    10. Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    11. Arnold Zellner, 2003. "Some Recent Developments in Econometric Inference," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 203-215.
    12. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    13. Gomes, M. Ivette & Neves, Cláudia, 2008. "Asymptotic comparison of the mixed moment and classical extreme value index estimators," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 643-653, April.
    14. Einmahl, J.H.J. & de Haan, L.F.M. & Krajina, A., 2009. "Estimating Extreme Bivariate Quantile Regions," Other publications TiSEM 007ce0a9-dd94-4301-ad62-1, Tilburg University, School of Economics and Management.
    15. Estate Khmaladze & Wolfgang Weil, 2008. "Local empirical processes near boundaries of convex bodies," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 813-842, December.
    16. Igor Fedotenkov, 2014. "A note on the bootstrap method for testing the existence of finite moments," Statistica, Department of Statistics, University of Bologna, vol. 74(4), pages 447-453.
    17. Li, Zhouping & Gong, Yun & Peng, Liang, 2010. "Empirical likelihood method for intermediate quantiles," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1022-1029, June.
    18. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
    19. Ana Ferreira & Casper G. de Vries, 2004. "Optimal Confidence Intervals for the Tail Index and High Quantiles," Tinbergen Institute Discussion Papers 04-090/2, Tinbergen Institute.
    20. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:104:y:2016:i:c:p:148-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.