IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v88y2016icp244-253.html
   My bibliography  Save this article

Disentangling bipartite and core-periphery structure in financial networks

Author

Listed:
  • Barucca, Paolo
  • Lillo, Fabrizio

Abstract

A growing number of systems are represented as networks whose architecture conveys significant information and determines many of their properties. Examples of network architecture include modular, bipartite, and core-periphery structures. However inferring the network structure is a non trivial task and can depend sometimes on the chosen null model. Here we propose a method for classifying network structures and ranking its nodes in a statistically well-grounded fashion. The method is based on the use of Belief Propagation for learning through Entropy Maximization on both the Stochastic Block Model (SBM) and the degree-corrected Stochastic Block Model (dcSBM). As a specific application we show how the combined use of the two ensembles—SBM and dcSBM—allows to disentangle the bipartite and the core-periphery structure in the case of the e-MID interbank network. Specifically we find that, taking into account the degree, this interbank network is better described by a bipartite structure, while using the SBM the core-periphery structure emerges only when data are aggregated for more than a week.

Suggested Citation

  • Barucca, Paolo & Lillo, Fabrizio, 2016. "Disentangling bipartite and core-periphery structure in financial networks," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 244-253.
  • Handle: RePEc:eee:chsofr:v:88:y:2016:i:c:p:244-253
    DOI: 10.1016/j.chaos.2016.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916300352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Masi, G. & Iori, G. & Caldarelli, G., 2006. "A fitness model for the Italian interbank money market," Working Papers 06/08, Department of Economics, City University London.
    2. L. Bargigli & G. di Iasio & L. Infante & F. Lillo & F. Pierobon, 2015. "The multiplex structure of interbank networks," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 673-691, April.
    3. Iori, Giulia & Mantegna, Rosario N. & Marotta, Luca & Miccichè, Salvatore & Porter, James & Tumminello, Michele, 2015. "Networked relationships in the e-MID interbank market: A trading model with memory," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 98-116.
    4. in ’t Veld, Daan & van Lelyveld, Iman, 2014. "Finding the core: Network structure in interbank markets," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 27-40.
    5. Iori, Giulia & De Masi, Giulia & Precup, Ovidiu Vasile & Gabbi, Giampaolo & Caldarelli, Guido, 2008. "A network analysis of the Italian overnight money market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 259-278, January.
    6. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    7. Michael Boss & Helmut Elsinger & Martin Summer & Stefan Thurner, 2004. "Network topology of the interbank market," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 677-684.
    8. Fricke, Daniel & Finger, Karl & Lux, Thomas, 2013. "On assortative and disassortative mixing in scale-free networks: The case of interbank credit networks," Kiel Working Papers 1830, Kiel Institute for the World Economy (IfW Kiel).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Barucca & Fabrizio Lillo, 2015. "Disentangling bipartite and core-periphery structure in financial networks," Papers 1511.08830, arXiv.org.
    2. Adão, Luiz F.S. & Silveira, Douglas & Ely, Regis A. & Cajueiro, Daniel O., 2022. "The impacts of interest rates on banks’ loan portfolio risk-taking," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    3. Lutz Honvehlmann, 2024. "Reciprocity in Interbank Markets," Papers 2412.10329, arXiv.org.
    4. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    5. Paolo Barucca & Fabrizio Lillo, 2015. "The organization of the interbank network and how ECB unconventional measures affected the e-MID overnight market," Papers 1511.08068, arXiv.org, revised Sep 2017.
    6. Paolo Barucca & Fabrizio Lillo, 2018. "The organization of the interbank network and how ECB unconventional measures affected the e-MID overnight market," Computational Management Science, Springer, vol. 15(1), pages 33-53, January.
    7. Elosegui, Pedro & Forte, Federico D. & Montes-Rojas, Gabriel, 2022. "Network structure and fragmentation of the Argentinean interbank markets," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 3(3).
    8. Temizsoy, Asena & Iori, Giulia & Montes-Rojas, Gabriel, 2017. "Network centrality and funding rates in the e-MID interbank market," Journal of Financial Stability, Elsevier, vol. 33(C), pages 346-365.
    9. Sadamori Kojaku & Giulio Cimini & Guido Caldarelli & Naoki Masuda, 2018. "Structural changes in the interbank market across the financial crisis from multiple core-periphery analysis," Papers 1802.05139, arXiv.org.
    10. Tabak, Benjamin Miranda & Silva, Thiago Christiano & Fiche, Marcelo Estrela & Braz, Tércio, 2021. "Citation likelihood analysis of the interbank financial networks literature: A machine learning and bibliometric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    11. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    12. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    13. Nicolò Pecora & Pablo Rovira Kaltwasser & Alessandro Spelta, 2016. "Discovering SIFIs in Interbank Communities," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-17, December.
    14. León, Carlos & Berndsen, Ron J., 2014. "Rethinking financial stability: Challenges arising from financial networks’ modular scale-free architecture," Journal of Financial Stability, Elsevier, vol. 15(C), pages 241-256.
    15. Teteryatnikova, Mariya, 2014. "Systemic risk in banking networks: Advantages of “tiered” banking systems," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 186-210.
    16. León, C., 2015. "Financial stability from a network perspective," Other publications TiSEM bb2e4e44-e842-45c6-a946-4, Tilburg University, School of Economics and Management.
    17. Maria Rosa Borges & Lauriano Ulica & Mariya Gubareva, 2020. "Systemic risk in the Angolan interbank payment system – a network approach," Applied Economics, Taylor & Francis Journals, vol. 52(45), pages 4900-4912, September.
    18. Hüser, Anne-Caroline, 2016. "Too interconnected to fail: A survey of the Interbank Networks literature," SAFE Working Paper Series 91, Leibniz Institute for Financial Research SAFE, revised 2016.
    19. Langfield, Sam & Liu, Zijun & Ota, Tomohiro, 2014. "Mapping the UK interbank system," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 288-303.
    20. Zappa, Paola & Vu, Duy Q., 2021. "Markets as networks evolving step by step: Relational Event Models for the interbank market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:88:y:2016:i:c:p:244-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.