IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v77y2015icp158-169.html
   My bibliography  Save this article

Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation

Author

Listed:
  • Iqbal, Muhammad
  • Rehan, Muhammad
  • Hong, Keum-Shik
  • Khaliq, Abdul
  • Saeed-ur-Rehman,

Abstract

This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies.

Suggested Citation

  • Iqbal, Muhammad & Rehan, Muhammad & Hong, Keum-Shik & Khaliq, Abdul & Saeed-ur-Rehman,, 2015. "Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 158-169.
  • Handle: RePEc:eee:chsofr:v:77:y:2015:i:c:p:158-169
    DOI: 10.1016/j.chaos.2015.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915001575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuetche Mbe, E.S. & Fotsin, H.B. & Kengne, J. & Woafo, P., 2014. "Parameters estimation based adaptive Generalized Projective Synchronization (GPS) of chaotic Chua’s circuit with application to chaos communication by parametric modulation," Chaos, Solitons & Fractals, Elsevier, vol. 61(C), pages 27-37.
    2. Singh, Piyush Pratap & Singh, Jay Prakash & Roy, B.K., 2014. "Synchronization and anti-synchronization of Lu and Bhalekar–Gejji chaotic systems using nonlinear active control," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 31-39.
    3. Sahoo, Banshidhar & Poria, Swarup, 2014. "The chaos and control of a food chain model supplying additional food to top-predator," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 52-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Wenhui & Lu, Junwei & Xu, Shengyuan & Li, Yongmin & Zhang, Zhengqiang, 2019. "Sampled-data controller design and stability analysis for nonlinear systems with input saturation and disturbances," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 14-27.
    2. Azhdari, Meysam & Binazadeh, Tahereh, 2023. "Robust limit cycle control for finite-time generation of sustained oscillations in nonlinear systems with mixed dead-zone and saturation," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    3. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    4. Sharma, Vivek & Sharma, B.B. & Nath, R., 2017. "Nonlinear unknown input sliding mode observer based chaotic system synchronization and message recovery scheme with uncertainty," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 51-58.
    5. Hossain, Mainul & Pati, N.C. & Pal, Saheb & Rana, Sourav & Pal, Nikhil & Layek, G.C., 2021. "Bifurcations and multistability in a food chain model with nanoparticles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 808-825.
    6. Aguirre-Hernández, B. & Campos-Cantón, E. & López-Renteria, J.A. & Díaz González, E.C., 2015. "A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 100-106.
    7. Singh, Piyush Pratap & Roy, Binoy Krishna, 2022. "Chaos and multistability behaviors in 4D dissipative cancer growth/decay model with unstable line of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Ghosh, Joydev & Sahoo, Banshidhar & Poria, Swarup, 2017. "Prey-predator dynamics with prey refuge providing additional food to predator," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 110-119.
    9. J. Humberto Pérez-Cruz, 2018. "Stabilization and Synchronization of Uncertain Zhang System by Means of Robust Adaptive Control," Complexity, Hindawi, vol. 2018, pages 1-19, December.
    10. Saikia, Munmi & Maiti, Atasi Patra & Devi, Anuradha, 2020. "Effect of habitat complexity on rhinoceros and tiger population model with additional food and poaching in Kaziranga National Park, Assam," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 169-191.
    11. Wang, Zhixiang & Zhang, Chun & Ding, Zuqin & Bi, Qinsheng, 2023. "From period-doubling bursting to chaotic–periodic bursting in a modified Chua’s circuit," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Thirthar, Ashraf Adnan & Majeed, Salam J. & Alqudah, Manar A. & Panja, Prabir & Abdeljawad, Thabet, 2022. "Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    13. Singh, Jay Prakash & Roy, Binoy Krishna & Jafari, Sajad, 2018. "New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 243-257.
    14. Ghorai, Santu & Poria, Swarup, 2016. "Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 57-67.
    15. Runzi Luo & Haipeng Su & Yanhui Zeng, 2017. "Chaos Control and Synchronization via Switched Output Control Strategy," Complexity, Hindawi, vol. 2017, pages 1-11, January.
    16. Drubi, Fátima & Ibáñez, Santiago & Pilarczyk, Paweł, 2021. "Nilpotent singularities and chaos: Tritrophic food chains," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    17. Ghayyur Hussain & Muhammad Siddique & Muhammad Majid Hussain & Muhammad Tahir Hassan & Naeem Aslam, 2021. "Synchronization of N-Non-Linear Slave Systems with Master System Using Non-Adaptive and Adaptive Coupled Observers," Energies, MDPI, vol. 14(11), pages 1-16, May.
    18. Sahoo, Banshidhar & Poria, Swarup, 2015. "Effects of allochthonous inputs in the control of infectious disease of prey," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 1-19.
    19. Kaur, Rajinder Pal & Sharma, Amit & Sharma, Anuj Kumar & Sahu, Govind Prasad, 2021. "Chaos control of chaotic plankton dynamics in the presence of additional food, seasonality, and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    20. Liu, Chao & Xun, Xinying & Zhang, Guilai & Li, Yuanke, 2020. "Stochastic dynamics and optimal control in a hybrid bioeconomic system with telephone noise and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:77:y:2015:i:c:p:158-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.