IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v77y2015icp149-157.html
   My bibliography  Save this article

Search for the periodicity of the prime Indian and American stock exchange indices using date-compensated discrete Fourier transformAuthor-Name: Samadder, Swetadri

Author

Listed:
  • Ghosh, Koushik
  • Basu, Tapasendra

Abstract

The behaviour of Indian stock markets has a persistent close association with the behaviour of American stock exchange. The present work is an effort in this direction and the purpose of the present work is to investigate the periodicity of the two prime Indian stock market indices viz. SENSEX and NIFTY and the prime American stock market indices viz. DOW-JONES and S&P500. To serve the present purpose we have here used SENSEX logarithmic daily close data during the period from 1st January, 1990 to 31st December, 2013, NIFTY logarithmic daily close data during the period from 3rd July, 1990 to 31st December, 2013, DOW-JONES logarithmic daily close data during the period from 10th January, 1928 to 31st December, 2013 and S&P500 logarithmic daily close data during the period 3rd January, 1950 to 31st December, 2013. For the present analysis we have first used double exponential smoothing on all the four time series in order to remove the trend and next we have generated monthly averages of the smoothed time series in order to remove the irregular fluctuations. At the final stage Ferraz-Mello method of date-compensated discrete Fourier transform (DCDFT) has been applied on the present four double-smoothed monthly averaged time series. Study reveals periods for SENSEX of 11, 53 and 142 months; for NIFTY periods of 22, 38, 52 and 139 months; for DOW-JONES periods of 23, 25, 27, 30, 59, 107, 138, 194 and 494 months and for S&P500 periods of 28, 66, 74, 149 and 384 months. With this specific periodic behaviour we have also observed some pseudo-periods in the present four financial time series which certainly adds to the uncertainty in the process of prediction for the same.

Suggested Citation

  • Ghosh, Koushik & Basu, Tapasendra, 2015. "Search for the periodicity of the prime Indian and American stock exchange indices using date-compensated discrete Fourier transformAuthor-Name: Samadder, Swetadri," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 149-157.
  • Handle: RePEc:eee:chsofr:v:77:y:2015:i:c:p:149-157
    DOI: 10.1016/j.chaos.2015.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915001563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. P. Oswiecimka & J. Kwapien & S. Drozdz & A. Z. Gorski & R. Rak, 2008. "Different fractal properties of positive and negative returns," Papers 0803.1374, arXiv.org.
    3. Lim, Gyuchang & Kim, SooYong & Lee, Hyoung & Kim, Kyungsik & Lee, Dong-In, 2007. "Multifractal detrended fluctuation analysis of derivative and spot markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 259-266.
    4. Yuan, Ying & Zhuang, Xin-tian & Jin, Xiu, 2009. "Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2189-2197.
    5. Stavroyiannis, S. & Makris, I. & Nikolaidis, V., 2010. "Non-extensive properties, multifractality, and inefficiency degree of the Athens Stock Exchange General Index," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 19-24, January.
    6. Norouzzadeh, P. & Rahmani, B., 2006. "A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 328-336.
    7. Oświe¸cimka, P. & Kwapień, J. & Drożdż, S., 2005. "Multifractality in the stock market: price increments versus waiting times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 626-638.
    8. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    9. Andersen, Torben G. & Bollerslev, Tim & Cai, Jun, 2000. "Intraday and interday volatility in the Japanese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 107-130, June.
    10. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    11. Drożdż, S. & Grümmer, F. & Ruf, F. & Speth, J., 2003. "Log-periodic self-similarity: an emerging financial law?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 174-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kavishka T. Rajapaksha & Dinushiya S. Rodrigo, 2023. "Short – Term Forecasting for Daily Stock Market Indices using Discrete Fourier Transforms," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(11), pages 2039-2044, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    2. Benbachir, Saâd & El Alaoui, Marwane, 2011. "A Multifractal Detrended Fluctuation Analysis of the Moroccan Stock Exchange," MPRA Paper 49003, University Library of Munich, Germany.
    3. El Alaoui, Marwane, 2017. "Price–volume multifractal analysis of the Moroccan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 473-485.
    4. Pavón-Domínguez, P. & Serrano, S. & Jiménez-Hornero, F.J. & Jiménez-Hornero, J.E. & Gutiérrez de Ravé, E. & Ariza-Villaverde, A.B., 2013. "Multifractal detrended fluctuation analysis of sheep livestock prices in origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4466-4476.
    5. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    6. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    7. Jia, Zhanliang & Cui, Meilan & Li, Handong, 2012. "Research on the relationship between the multifractality and long memory of realized volatility in the SSECI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 740-749.
    8. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    9. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    10. Stavroyiannis, Stavros & Babalos, Vassilios & Bekiros, Stelios & Lahmiri, Salim & Uddin, Gazi Salah, 2019. "The high frequency multifractal properties of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 62-71.
    11. Leonarduzzi, R. & Wendt, H. & Abry, P. & Jaffard, S. & Melot, C. & Roux, S.G. & Torres, M.E., 2016. "p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 319-339.
    12. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are developed and emerging agricultural futures markets multifractal? A comparative perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3828-3836.
    13. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    14. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    15. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    16. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    17. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    18. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Chatterjee, Sucharita, 2020. "Analysis of the human gait rhythm in Neurodegenerative disease: A multifractal approach using Multifractal detrended cross correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Liu, Li & Wang, Yudong & Wan, Jieqiu, 2010. "Analysis of efficiency for Shenzhen stock market: Evidence from the source of multifractality," International Review of Financial Analysis, Elsevier, vol. 19(4), pages 237-241, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:77:y:2015:i:c:p:149-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.