Time-dependent iteration of random functions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2015.02.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Elton, John H., 1990. "A multiplicative ergodic theorem for lipschitz maps," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 39-47, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gerold Alsmeyer, 2003. "On the Harris Recurrence of Iterated Random Lipschitz Functions and Related Convergence Rate Results," Journal of Theoretical Probability, Springer, vol. 16(1), pages 217-247, January.
- Collamore, Jeffrey F. & Vidyashankar, Anand N., 2013. "Tail estimates for stochastic fixed point equations via nonlinear renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 123(9), pages 3378-3429.
- Buraczewski, Dariusz & Damek, Ewa, 2017. "A simple proof of heavy tail estimates for affine type Lipschitz recursions," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 657-668.
- Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
- Olivier Wintenberger, 2013.
"Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
- Wintenberger, Olivier, 2013. "Continuous invertibility and stable QML estimation of the EGARCH(1,1) model," MPRA Paper 46027, University Library of Munich, Germany.
- Steinsaltz, David & Tuljapurkar, Shripad & Horvitz, Carol, 2011. "Derivatives of the stochastic growth rate," Theoretical Population Biology, Elsevier, vol. 80(1), pages 1-15.
- Yuri Kabanov & Serguei Pergamenshchikov, 2020. "Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process," Finance and Stochastics, Springer, vol. 24(1), pages 39-69, January.
- Alsmeyer, Gerold & Fuh, Cheng-Der, 2001. "Limit theorems for iterated random functions by regenerative methods," Stochastic Processes and their Applications, Elsevier, vol. 96(1), pages 123-142, November.
- Blazsek, Szabolcs & Licht, Adrian, 2020. "Prediction accuracy of bivariate score-driven risk premium and volatility filters: an illustration for the Dow Jones," UC3M Working papers. Economics 31339, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Damek, Ewa & Kołodziejek, Bartosz, 2020. "Stochastic recursions: Between Kesten’s and Grincevičius–Grey’s assumptions," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1792-1819.
- Baye Matar Kandji, 2023. "On the growth rate of superadditive processes and the stability of functional GARCH models," Working Papers 2023-07, Center for Research in Economics and Statistics.
- Roberts, Gareth O. & Rosenthal, Jeffrey S., 2002. "One-shot coupling for certain stochastic recursive sequences," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 195-208, June.
- Alsmeyer, Gerold, 2016. "On the stationary tail index of iterated random Lipschitz functions," Stochastic Processes and their Applications, Elsevier, vol. 126(1), pages 209-233.
- Fuh, Cheng-Der, 2021. "Asymptotic behavior for Markovian iterated function systems," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 186-211.
- Dmitrii S. Silvestrov & Örjan Stenflo, 1998. "Ergodic Theorems for Iterated Function Systems Controlled by Regenerative Sequences," Journal of Theoretical Probability, Springer, vol. 11(3), pages 589-608, July.
- Blazsek Szabolcs & Escribano Alvaro & Licht Adrian, 2021. "Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 53-66, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:75:y:2015:i:c:p:178-184. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.