IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v75y2015icp178-184.html
   My bibliography  Save this article

Time-dependent iteration of random functions

Author

Listed:
  • Mendivil, F.

Abstract

In studying the iteration of random functions, the usual situation is to assume time-homogeneity of the process and some average contractivity condition. In this paper we change both of these conditions by investigating the iteration of time-dependent random functions where all the functions converge (as the iterations proceed) uniformly to the identity. The behaviour of the iterates is remarkably different from the standard contractive situation. In particular, we show that for affine maps in Rd the “chaos game” trajectory converges almost surely. This is in stark contrast to the usual situation where the trajectory moves ergodically throughout the attractor.

Suggested Citation

  • Mendivil, F., 2015. "Time-dependent iteration of random functions," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 178-184.
  • Handle: RePEc:eee:chsofr:v:75:y:2015:i:c:p:178-184
    DOI: 10.1016/j.chaos.2015.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915000648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.02.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elton, John H., 1990. "A multiplicative ergodic theorem for lipschitz maps," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 39-47, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerold Alsmeyer, 2003. "On the Harris Recurrence of Iterated Random Lipschitz Functions and Related Convergence Rate Results," Journal of Theoretical Probability, Springer, vol. 16(1), pages 217-247, January.
    2. Collamore, Jeffrey F. & Vidyashankar, Anand N., 2013. "Tail estimates for stochastic fixed point equations via nonlinear renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 123(9), pages 3378-3429.
    3. Buraczewski, Dariusz & Damek, Ewa, 2017. "A simple proof of heavy tail estimates for affine type Lipschitz recursions," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 657-668.
    4. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    5. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    6. Steinsaltz, David & Tuljapurkar, Shripad & Horvitz, Carol, 2011. "Derivatives of the stochastic growth rate," Theoretical Population Biology, Elsevier, vol. 80(1), pages 1-15.
    7. Yuri Kabanov & Serguei Pergamenshchikov, 2020. "Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process," Finance and Stochastics, Springer, vol. 24(1), pages 39-69, January.
    8. Alsmeyer, Gerold & Fuh, Cheng-Der, 2001. "Limit theorems for iterated random functions by regenerative methods," Stochastic Processes and their Applications, Elsevier, vol. 96(1), pages 123-142, November.
    9. Blazsek, Szabolcs & Licht, Adrian, 2020. "Prediction accuracy of bivariate score-driven risk premium and volatility filters: an illustration for the Dow Jones," UC3M Working papers. Economics 31339, Universidad Carlos III de Madrid. Departamento de Economía.
    10. Damek, Ewa & Kołodziejek, Bartosz, 2020. "Stochastic recursions: Between Kesten’s and Grincevičius–Grey’s assumptions," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1792-1819.
    11. Baye Matar Kandji, 2023. "On the growth rate of superadditive processes and the stability of functional GARCH models," Working Papers 2023-07, Center for Research in Economics and Statistics.
    12. Roberts, Gareth O. & Rosenthal, Jeffrey S., 2002. "One-shot coupling for certain stochastic recursive sequences," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 195-208, June.
    13. Alsmeyer, Gerold, 2016. "On the stationary tail index of iterated random Lipschitz functions," Stochastic Processes and their Applications, Elsevier, vol. 126(1), pages 209-233.
    14. Fuh, Cheng-Der, 2021. "Asymptotic behavior for Markovian iterated function systems," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 186-211.
    15. Dmitrii S. Silvestrov & Örjan Stenflo, 1998. "Ergodic Theorems for Iterated Function Systems Controlled by Regenerative Sequences," Journal of Theoretical Probability, Springer, vol. 11(3), pages 589-608, July.
    16. Blazsek Szabolcs & Escribano Alvaro & Licht Adrian, 2021. "Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 53-66, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:75:y:2015:i:c:p:178-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.