IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v66y2014icp74-85.html
   My bibliography  Save this article

Analysis of a delayed epidemic model with pulse vaccination

Author

Listed:
  • Samanta, G.P.

Abstract

In this paper, we have considered a dynamical model of infectious disease that spread by asymptomatic carriers and symptomatically infectious individuals with varying total population size, saturation incidence rate and discrete time delay to become infectious. It is assumed that there is a time lag (τ) to account for the fact that an individual infected with bacteria or virus is not infectious until after some time after exposure. The probability that an individual remains in the latency period (exposed class) at least t time units before becoming infectious is given by a step function with value 1 for 0⩽t⩽τ and value zero for t>τ. The probability that an individual in the latency period has survived is given by e-μτ, where μ denotes the natural mortality rate in all epidemiological classes. Pulse vaccination is an effective and important strategy for the elimination of infectious diseases and so we have analyzed this model with pulse vaccination. We have defined two positive numbers R1 and R2. It is proved that there exists an infection-free periodic solution which is globally attractive if R1<1 and the disease is permanent if R2>1. The important mathematical findings for the dynamical behaviour of the infectious disease model are also numerically verified using MATLAB. Finally epidemiological implications of our analytical findings are addressed critically.

Suggested Citation

  • Samanta, G.P., 2014. "Analysis of a delayed epidemic model with pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 74-85.
  • Handle: RePEc:eee:chsofr:v:66:y:2014:i:c:p:74-85
    DOI: 10.1016/j.chaos.2014.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914000873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chunjin Wei & Lansun Chen, 2008. "A Delayed Epidemic Model with Pulse Vaccination," Discrete Dynamics in Nature and Society, Hindawi, vol. 2008, pages 1-12, March.
    2. Gakkhar, Sunita & Negi, Kuldeep, 2008. "Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 626-638.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Napasool Wongvanich & I-Ming Tang & Marc-Antoine Dubois & Puntani Pongsumpun, 2021. "Mathematical Modeling and Optimal Control of the Hand Foot Mouth Disease Affected by Regional Residency in Thailand," Mathematics, MDPI, vol. 9(22), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Guirong & Yang, Qigui, 2009. "Complex dynamics in a linear impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2341-2353.
    2. Tipsri, S. & Chinviriyasit, W., 2015. "The effect of time delay on the dynamics of an SEIR model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 153-172.
    3. Keshri, Neha & Mishra, Bimal Kumar, 2014. "Two time-delay dynamic model on the transmission of malicious signals in wireless sensor network," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 151-158.
    4. Zhang, Tailei & Teng, Zhidong, 2009. "Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2411-2425.
    5. Jiao, Jianjun & Cai, Shaohong & Li, Limei, 2016. "Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 145-159.
    6. Bansal, Komal & Mathur, Trilok & Agarwal, Shivi, 2023. "Fractional-order crime propagation model with non-linear transmission rate," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Xu, Rui & Ma, Zhien, 2009. "Stability of a delayed SIRS epidemic model with a nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2319-2325.
    8. Dutta, Protyusha & Sahoo, Debgopal & Mondal, Sudeshna & Samanta, Guruprasad, 2022. "Dynamical complexity of a delay-induced eco-epidemic model with Beddington–DeAngelis incidence rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 45-90.
    9. Kim, Hye Kyung & Baek, Hunki, 2013. "The dynamical complexity of a predator–prey system with Hassell–Varley functional response and impulsive effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 1-14.
    10. Imane Abouelkheir & Fadwa El Kihal & Mostafa Rachik & Ilias Elmouki, 2019. "Optimal Impulse Vaccination Approach for an SIR Control Model with Short-Term Immunity," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    11. Ren, Jianguo & Yang, Xiaofan & Yang, Lu-Xing & Xu, Yonghong & Yang, Fanzhou, 2012. "A delayed computer virus propagation model and its dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 74-79.
    12. Park, Hojeong, 2016. "A real option analysis for stochastic disease control and vaccine stockpile policy: An application to H1N1 in Korea," Economic Modelling, Elsevier, vol. 53(C), pages 187-194.
    13. Yanhui Wei & Liang’an Huo & Hongguang He, 2022. "Research on Rumor-Spreading Model with Holling Type III Functional Response," Mathematics, MDPI, vol. 10(4), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:66:y:2014:i:c:p:74-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.