IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v44y2011i8p600-612.html
   My bibliography  Save this article

Detection of maximum loadability limits and weak buses using Chaotic PSO considering security constraints

Author

Listed:
  • Acharjee, P.
  • Mallick, S.
  • Thakur, S.S.
  • Ghoshal, S.P.

Abstract

In the current research chaotic search is used with the optimization technique for solving non-linear complicated power system problems because Chaos can overcome the local optima problem of optimization technique. Power system problem, more specifically voltage stability, is one of the practical examples of non-linear, complex, convex problems. Smart grid, restructured energy system and socio-economic development fetch various uncertain events in power systems and the level of uncertainty increases to a great extent day by day. In this context, analysis of voltage stability is essential. The efficient method to assess the voltage stability is maximum loadability limit (MLL). MLL problem is formulated as a maximization problem considering practical security constraints (SCs). Detection of weak buses is also important for the analysis of power system stability. Both MLL and weak buses are identified by PSO methods and FACTS devices can be applied to the detected weak buses for the improvement of stability. Three particle swarm optimization (PSO) techniques namely General PSO (GPSO), Adaptive PSO (APSO) and Chaotic PSO (CPSO) are presented for the comparative study with obtaining MLL and weak buses under different SCs. In APSO method, PSO-parameters are made adaptive with the problem and chaos is incorporated in CPSO method to obtain reliable convergence and better performances. All three methods are applied on standard IEEE 14 bus, 30 bus, 57 bus and 118 bus test systems to show their comparative computing effectiveness and optimization efficiencies.

Suggested Citation

  • Acharjee, P. & Mallick, S. & Thakur, S.S. & Ghoshal, S.P., 2011. "Detection of maximum loadability limits and weak buses using Chaotic PSO considering security constraints," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 600-612.
  • Handle: RePEc:eee:chsofr:v:44:y:2011:i:8:p:600-612
    DOI: 10.1016/j.chaos.2011.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077911000828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2011.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alatas, Bilal & Akin, Erhan & Ozer, A. Bedri, 2009. "Chaos embedded particle swarm optimization algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1715-1734.
    2. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    3. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Tang, Fang & Huang, De-Xian, 2005. "Improved particle swarm optimization combined with chaos," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1261-1271.
    4. Chuanwen, Jiang & Bompard, Etorre, 2005. "A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(1), pages 57-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panda, Ambarish & Tripathy, M., 2015. "Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm," Energy, Elsevier, vol. 93(P1), pages 816-827.
    2. Farhan Hameed Malik & Muhammad Waseem Khan & Tauheed Ur Rahman & Muhammad Ehtisham & Muhammad Faheem & Zunaib Maqsood Haider & Matti Lehtonen, 2024. "A Comprehensive Review on Voltage Stability in Wind-Integrated Power Systems," Energies, MDPI, vol. 17(3), pages 1-36, January.
    3. Pattnaik, Ashribad & Dauda, Alpesh Kumar & Panda, Ambarish, 2023. "Optimal utilization of clean energy and its impact on hybrid power systems incorporating STATCOM and pumped hydro storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Panda, Ambarish & Tripathy, M. & Barisal, A.K. & Prakash, T., 2017. "A modified bacteria foraging based optimal power flow framework for Hydro-Thermal-Wind generation system in the presence of STATCOM," Energy, Elsevier, vol. 124(C), pages 720-740.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatsumi, Keiji & Ibuki, Takeru & Tanino, Tetsuzo, 2015. "Particle swarm optimization with stochastic selection of perturbation-based chaotic updating system," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 904-929.
    2. Li, Chaoshun & Zhou, Jianzhong & Xiao, Jian & Xiao, Han, 2012. "Parameters identification of chaotic system by chaotic gravitational search algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 539-547.
    3. Tatsumi, Keiji & Obita, Yoshinori & Tanino, Tetsuzo, 2009. "Chaos generator exploiting a gradient model with sinusoidal perturbations for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1705-1723.
    4. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    5. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    6. He, Yao-Yao & Zhou, Jian-Zhong & Xiang, Xiu-Qiao & Chen, Heng & Qin, Hui, 2009. "Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3169-3176.
    7. Alatas, Bilal & Akin, Erhan, 2009. "Chaotically encoded particle swarm optimization algorithm and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 939-950.
    8. Changchun Cai & Bing Jiang & Lihua Deng, 2015. "General Dynamic Equivalent Modeling of Microgrid Based on Physical Background," Energies, MDPI, vol. 8(11), pages 1-20, November.
    9. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    10. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation for time-delay chaotic system by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1391-1398.
    11. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    12. Sedighizadeh, Davoud & Masehian, Ellips & Sedighizadeh, Mostafa & Akbaripour, Hossein, 2021. "GEPSO: A new generalized particle swarm optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 194-212.
    13. Naanaa, Anis, 2015. "Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 402-411.
    14. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    15. Adel Taieb & Moêz Soltani & Abdelkader Chaari, 2017. "Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO," Complexity, Hindawi, vol. 2017, pages 1-11, October.
    16. Gehad Ismail Sayed & Ashraf Darwish & Aboul Ella Hassanien, 2018. "A New Chaotic Whale Optimization Algorithm for Features Selection," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 300-344, July.
    17. Yang, Dixiong & Li, Gang & Cheng, Gengdong, 2007. "On the efficiency of chaos optimization algorithms for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1366-1375.
    18. Viacheslav Morozov & Artur I. Petrov & Vladimir Shepelev & Mohammed Balfaqih, 2024. "Ideology of Urban Road Transport Chaos and Accident Risk Management for Sustainable Transport Systems," Sustainability, MDPI, vol. 16(6), pages 1-32, March.
    19. Mohamad Javad Alizadeh & Davoud Ahmadyar & Ali Afghantoloee, 2017. "Improvement on the Existing Equations for Predicting Longitudinal Dispersion Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1777-1794, April.
    20. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:44:y:2011:i:8:p:600-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.