IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i3p1893-1899.html
   My bibliography  Save this article

Is gravitational quantization another consequence of General Relativity?

Author

Listed:
  • Giné, Jaume

Abstract

This paper shows that the perturbation of Newton’s inverse-square law that gives the Schwarzschild solution for the case of a punctual or spherical and homogeneous mass has a similar form as the development with respect to the delay of the retarded scalar potential proposed in [15,16]. This observation suggests the possibility that gravitational quantization is another consequence of General Relativity.

Suggested Citation

  • Giné, Jaume, 2009. "Is gravitational quantization another consequence of General Relativity?," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1893-1899.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1893-1899
    DOI: 10.1016/j.chaos.2009.03.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909002318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Is Einstein’s general field equation more fundamental than quantum field theory and particle physics?," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 525-531.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2008. "Exact non-perturbative derivation of gravity’s G¯4 fine structure constant, the mass of the Higgs and elementary black holes," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 346-359.
    2. Ćirić, Ljubomir B. & Ješić, Siniša N. & Ume, Jeong Sheok, 2008. "The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 781-791.
    3. Sular, Si˙bel & Özgür, Ci˙han, 2009. "On some submanifolds of Kenmotsu manifolds," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 1990-1995.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1893-1899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.