IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i2p767-772.html
   My bibliography  Save this article

Chaos-based hash function (CBHF) for cryptographic applications

Author

Listed:
  • Amin, Mohamed
  • Faragallah, Osama S.
  • Abd El-Latif, Ahmed A.

Abstract

As the core of cryptography, hash is the basic technique for information security. Many of the hash functions generate the message digest through a randomizing process of the original message. Subsequently, a chaos system also generates a random behavior, but at the same time a chaos system is completely deterministic. In this paper, an algorithm for one-way hash function construction based on chaos theory is introduced. Theoretical analysis and computer simulation indicate that the algorithm can satisfy all performance requirements of hash function in an efficient and flexible manner and secure against birthday attacks or meet-in-the-middle attacks, which is good choice for data integrity or authentication.

Suggested Citation

  • Amin, Mohamed & Faragallah, Osama S. & Abd El-Latif, Ahmed A., 2009. "Chaos-based hash function (CBHF) for cryptographic applications," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 767-772.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:767-772
    DOI: 10.1016/j.chaos.2009.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909000460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Muhammad Khurram & Zhang, Jiashu & Wang, Xiaomin, 2008. "Chaotic hash-based fingerprint biometric remote user authentication scheme on mobile devices," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 519-524.
    2. Xiao, Di & Liao, Xiaofeng & Deng, Shaojiang, 2005. "One-way Hash function construction based on the chaotic map with changeable-parameter," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 65-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asgari Chenaghlu, Meysam & Jamali, Shahram & Nikzad Khasmakhi, Narjes, 2016. "A novel keyed parallel hashing scheme based on a new chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 216-225.
    2. Tutueva, Aleksandra V. & Karimov, Artur I. & Moysis, Lazaros & Volos, Christos & Butusov, Denis N., 2020. "Construction of one-way hash functions with increased key space using adaptive chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Rasool, Masrat & Belhaouari, Samir Brahim, 2023. "From Collatz Conjecture to chaos and hash function," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Li, Yantao & Li, Xiang, 2016. "Chaotic hash function based on circular shifts with variable parameters," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 639-648.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhshani, A. & Behnia, S. & Akhavan, A. & Jafarizadeh, M.A. & Abu Hassan, H. & Hassan, Z., 2009. "Hash function based on hierarchy of 2D piecewise nonlinear chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2405-2412.
    2. Yang, Huaqian & Wong, Kwok-Wo & Liao, Xiaofeng & Wang, Yong & Yang, Degang, 2009. "One-way hash function construction based on chaotic map network," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2566-2574.
    3. Ren, Haijun & Wang, Yong & Xie, Qing & Yang, Huaqian, 2009. "A novel method for one-way hash function construction based on spatiotemporal chaos," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2014-2022.
    4. Akhavan, A. & Samsudin, A. & Akhshani, A., 2009. "Hash function based on piecewise nonlinear chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1046-1053.
    5. Asgari Chenaghlu, Meysam & Jamali, Shahram & Nikzad Khasmakhi, Narjes, 2016. "A novel keyed parallel hashing scheme based on a new chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 216-225.
    6. Mohamed Amine Ferrag & Leandros Maglaras & Abdelouahid Derhab & Helge Janicke, 2020. "Authentication schemes for smart mobile devices: threat models, countermeasures, and open research issues," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(2), pages 317-348, February.
    7. Khan, Muhammad Khurram & Zhang, Jiashu & Wang, Xiaomin, 2008. "Chaotic hash-based fingerprint biometric remote user authentication scheme on mobile devices," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 519-524.
    8. Rasool, Masrat & Belhaouari, Samir Brahim, 2023. "From Collatz Conjecture to chaos and hash function," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Han, Song, 2008. "Security of a key agreement protocol based on chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 764-768.
    10. Tutueva, Aleksandra V. & Karimov, Artur I. & Moysis, Lazaros & Volos, Christos & Butusov, Denis N., 2020. "Construction of one-way hash functions with increased key space using adaptive chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Wang, Yu & Chen, Liquan & Wang, Xingyuan & Wu, Ge & Yu, Kunliang & Lu, Tianyu, 2021. "The design of keyed hash function based on CNN-MD structure," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Xiang, Tao & Wong, Kwok-Wo & Liao, Xiaofeng, 2009. "On the security of a novel key agreement protocol based on chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 672-675.
    13. Zhao, Liang & Liao, Xiaofeng & Xiao, Di & Xiang, Tao & Zhou, Qing & Duan, Shukai, 2009. "True random number generation from mobile telephone photo based on chaotic cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1692-1699.
    14. Persohn, K.J. & Povinelli, R.J., 2012. "Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 238-245.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:767-772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.