IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i5p2495-2501.html
   My bibliography  Save this article

Synchronization conditions for chaotic nonlinear continuous neural networks

Author

Listed:
  • Hu, Jiming

Abstract

This paper deals with the synchronization problem of a class of chaotic nonlinear neural networks. A feedback control gain matrix is derived to achieve the state synchronization of two identical nonlinear neural networks by using the Lyapunov stability theory, and the obtained criterion condition can be verified if a certain Hamiltonian matrix with no eigenvalues on the imaginary axis. The new sufficient condition can avoid solving an algebraic Riccati equation. The results are illustrated through one numerical example.

Suggested Citation

  • Hu, Jiming, 2009. "Synchronization conditions for chaotic nonlinear continuous neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2495-2501.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2495-2501
    DOI: 10.1016/j.chaos.2008.09.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908004402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.09.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lou, Xuyang & Cui, Baotong, 2007. "Synchronization of competitive neural networks with different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 563-576.
    2. Park, Ju H., 2008. "On global stability criterion of neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 444-449.
    3. Zhao, Zhenjiang, 2008. "Global exponential robust periodicity and stability of interval neural networks with both variable and unbounded delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 91-97.
    4. Liu, Hailin & Chen, Guohua, 2007. "Delay-dependent stability for neural networks with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 171-177.
    5. Huang, Zai-Tang & Yang, Qi-Gui & Luo, Xiao-shu, 2008. "Exponential stability of impulsive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 770-780.
    6. Cheng, Chao-Jung & Liao, Teh-Lu & Hwang, Chi-Chuan, 2005. "Exponential synchronization of a class of chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 197-206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hongmei & Cao, Jinde & Xiong, Lianglin, 2019. "Novel synchronization conditions for time-varying delayed Lur’e system with parametric uncertainty," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 224-236.
    2. Vadivel, R. & Hammachukiattikul, Porpattama & Rajchakit, G. & Syed Ali, M. & Unyong, Bundit, 2021. "Finite-time event-triggered approach for recurrent neural networks with leakage term and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 765-790.
    3. Cui, Kaiyan & Song, Zhanjie & Zhang, Shuo, 2022. "Stability of neutral-type neural network with Lévy noise and mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Luo, Wenpin & Zhong, Shouming & Yang, Jun, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1084-1091.
    5. Lu, Hongtao & van Leeuwen, C., 2006. "Synchronization of chaotic neural networks via output or state coupling," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 166-176.
    6. Baluni, Sapna & Sehgal, Ishani & Yadav, Vijay K. & Das, Subir, 2024. "Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Li, Tao & Fei, Shu-min & Zhang, Kan-jian, 2008. "Synchronization control of recurrent neural networks with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 982-996.
    8. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    9. Hajihosseini, Amirhossein & Maleki, Farzaneh & Rokni Lamooki, Gholam Reza, 2011. "Bifurcation analysis on a generalized recurrent neural network with two interconnected three-neuron components," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 1004-1019.
    10. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    11. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Stochastic Memristive Quaternion-Valued Neural Networks with Time Delays: An Analysis on Mean Square Exponential Input-to-State Stability," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    12. P. Balasubramaniam & G. Nagamani, 2011. "Global Robust Passivity Analysis for Stochastic Interval Neural Networks with Interval Time-Varying Delays and Markovian Jumping Parameters," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 197-215, April.
    13. Wang, Weiping & Jia, Xiao & Luo, Xiong & Kurths, Jürgen & Yuan, Manman, 2019. "Fixed-time synchronization control of memristive MAM neural networks with mixed delays and application in chaotic secure communication," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 85-96.
    14. Lou, Xuyang & Cui, Baotong, 2007. "Synchronization of competitive neural networks with different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 563-576.
    15. Pharunyou Chanthorn & Grienggrai Rajchakit & Jenjira Thipcha & Chanikan Emharuethai & Ramalingam Sriraman & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    16. Sriraman, R. & Cao, Yang & Samidurai, R., 2020. "Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 103-118.
    17. Park, Ju H., 2006. "On global stability criterion for neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 897-902.
    18. Lu, Jianquan & Cao, Jinde, 2007. "Synchronization-based approach for parameters identification in delayed chaotic neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 672-682.
    19. Xiong, Wenjun & Xie, Wei & Cao, Jinde, 2006. "Adaptive exponential synchronization of delayed chaotic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 832-842.
    20. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Global Stability Analysis of Fractional-Order Quaternion-Valued Bidirectional Associative Memory Neural Networks," Mathematics, MDPI, vol. 8(5), pages 1-27, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2495-2501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.