IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i4p1975-1979.html
   My bibliography  Save this article

Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg–Marquardt learning algorithm

Author

Listed:
  • Mirzaee, Hossein

Abstract

The Levenberg–Marquardt learning algorithm is applied for training a multilayer perception with three hidden layer each with ten neurons in order to carefully map the structure of chaotic time series such as Mackey–Glass time series. First the MLP network is trained with 1000 data, and then it is tested with next 500 data. After that the trained and tested network is applied for long-term prediction of next 120 data which come after test data. The prediction is such a way that, the first inputs to network for prediction are the four last data of test data, then the predicted value is shifted to the regression vector which is the input to the network, then after first four-step of prediction, the input regression vector to network is fully predicted values and in continue, each predicted data is shifted to input vector for subsequent prediction.

Suggested Citation

  • Mirzaee, Hossein, 2009. "Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg–Marquardt learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1975-1979.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1975-1979
    DOI: 10.1016/j.chaos.2008.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908003585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Shing-Tai & Lai, Chih-Chin, 2008. "Identification of chaotic systems by neural network with hybrid learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 233-244.
    2. Cechin, Adelmo L. & Pechmann, Denise R. & de Oliveira, Luiz P.L., 2008. "Optimizing Markovian modeling of chaotic systems with recurrent neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1317-1327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarosław Malczewski & Wawrzyniec Czubak, 2021. "Hybrid Convolutional Neural Networks Based Framework for Skimmed Milk Powder Price Forecasting," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    2. Ait Maatallah, Othman & Achuthan, Ajit & Janoyan, Kerop & Marzocca, Pier, 2015. "Recursive wind speed forecasting based on Hammerstein Auto-Regressive model," Applied Energy, Elsevier, vol. 145(C), pages 191-197.
    3. Mirzaee, Hossein, 2009. "Linear combination rule in genetic algorithm for optimization of finite impulse response neural network to predict natural chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2681-2689.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirzaee, Hossein, 2009. "Linear combination rule in genetic algorithm for optimization of finite impulse response neural network to predict natural chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2681-2689.
    2. Zuñiga Aguilar, C.J. & Gómez-Aguilar, J.F. & Alvarado-Martínez, V.M. & Romero-Ugalde, H.M., 2020. "Fractional order neural networks for system identification," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Banerjee, Amit & Abu-Mahfouz, Issam, 2014. "A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 65-83.
    4. Sangiorgio, Matteo & Dercole, Fabio, 2020. "Robustness of LSTM neural networks for multi-step forecasting of chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Ahmadi, Mohamadreza & Mojallali, Hamed, 2012. "Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1108-1120.
    6. Shi, Xiancheng & Feng, Yucheng & Zeng, Jinsong & Chen, Kefu, 2017. "Chaos time-series prediction based on an improved recursive Levenberg–Marquardt algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 57-61.
    7. Cheng, Wei & Wang, Yan & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Zang, Shengyin & Liu, Hao & Cheng, Hao & Wu, Jiagui, 2021. "High-efficiency chaotic time series prediction based on time convolution neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Sangiorgio, Matteo & Dercole, Fabio & Guariso, Giorgio, 2021. "Forecasting of noisy chaotic systems with deep neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1975-1979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.