IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i5p1317-1327.html
   My bibliography  Save this article

Optimizing Markovian modeling of chaotic systems with recurrent neural networks

Author

Listed:
  • Cechin, Adelmo L.
  • Pechmann, Denise R.
  • de Oliveira, Luiz P.L.

Abstract

In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included.

Suggested Citation

  • Cechin, Adelmo L. & Pechmann, Denise R. & de Oliveira, Luiz P.L., 2008. "Optimizing Markovian modeling of chaotic systems with recurrent neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1317-1327.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:5:p:1317-1327
    DOI: 10.1016/j.chaos.2006.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906009908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirzaee, Hossein, 2009. "Linear combination rule in genetic algorithm for optimization of finite impulse response neural network to predict natural chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2681-2689.
    2. Mirzaee, Hossein, 2009. "Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg–Marquardt learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1975-1979.
    3. Sangiorgio, Matteo & Dercole, Fabio, 2020. "Robustness of LSTM neural networks for multi-step forecasting of chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Cheng, Wei & Wang, Yan & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Zang, Shengyin & Liu, Hao & Cheng, Hao & Wu, Jiagui, 2021. "High-efficiency chaotic time series prediction based on time convolution neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Sangiorgio, Matteo & Dercole, Fabio & Guariso, Giorgio, 2021. "Forecasting of noisy chaotic systems with deep neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:5:p:1317-1327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.