IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i1p190-196.html
   My bibliography  Save this article

Fractal dimension and measure of the subset of Moran set

Author

Listed:
  • Dai, Meifeng
  • Jiang, Ying

Abstract

We discuss the fractal dimension and measure for the subset BP(ω) of Moran set E(ω) in Rd satisfying the strong separation condition. Firstly, we give the Hausdorff dimension of subset BP(ω) in compatible case and incompatible case. Then we attain that there exists a subset B of the set BP(ω) such that B has full μP-measure but zero Hausdorff measure in incompatible case. Finally, if the gap condition holds, we see that BP(ω) and E(ω) have the same Hausdorff measure and packing measure, and both of them are α-sets in compatible case.

Suggested Citation

  • Dai, Meifeng & Jiang, Ying, 2009. "Fractal dimension and measure of the subset of Moran set," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 190-196.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:1:p:190-196
    DOI: 10.1016/j.chaos.2007.07.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907005589
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.07.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang-Xiong Zhen, 2006. "Dimensions of subsets of cantor-type sets," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2006, pages 1-8, October.
    2. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    3. Dai, Meifeng & Liu, Dehua, 2008. "The local dimension of Moran measures satisfying the strong separation condition," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1025-1030.
    4. Dai, Meifeng, 2006. "The equivalence of measures on Moran set in general metric space," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 55-64.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Meifeng & Jiang, Ying, 2009. "The equivalence of multifractal measures on cookie-cutter-like sets," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1408-1415.
    2. Sun, Lei & Cheng, Zhengxing & Huang, Yongdong, 2007. "Construction of trivariate biorthogonal compactly supported wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1412-1420.
    3. Huang, Yongdong & Cheng, Zhengxing, 2007. "Minimum-energy frames associated with refinable function of arbitrary integer dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 503-515.
    4. Sergeyev, Yaroslav D., 2009. "Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3042-3046.
    5. Qiu, Hua & Su, Weiyi, 2007. "3-Adic Cantor function on local fields and its p-adic derivative," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1625-1634.
    6. Mesón, Alejandro & Vericat, Fernando, 2009. "Simultaneous multifractal decompositions for the spectra of local entropies and ergodic averages," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2353-2363.
    7. Estrada, Ernesto, 2007. "Graphs (networks) with golden spectral ratio," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1168-1182.
    8. Sun, Lei & Zhang, Xiaozhong, 2009. "A note on biorthogonality of the scaling functions with arbitrary matrix dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 711-715.
    9. Iovane, Gerardo, 2009. "The set of prime numbers: Multiscale analysis and numeric accelerators," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1953-1965.
    10. Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.
    11. El Naschie, M.S., 2006. "E-infinity theory—Some recent results and new interpretations," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 845-853.
    12. EL-Nabulsi, Ahmad Rami, 2009. "Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 52-61.
    13. Yuan, De-you & Du, Shu-de & Cheng, Zheng-xing, 2009. "Design and properties of vector-valued wavelets associated with an orthogonal vector-valued scaling function," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1368-1376.
    14. Huang, Yongdong & Lei, Chongmin & Yang, Miao, 2009. "The construction of a class of trivariate nonseparable compactly supported orthogonal wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1530-1537.
    15. Sergeyev, Yaroslav D., 2007. "Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 50-75.
    16. Chen, Qingjiang & Huo, Ailian, 2009. "The research of a class of biorthogonal compactly supported vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 951-961.
    17. Sun, Lei & Li, Gang, 2009. "Generalized orthogonal multiwavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2420-2424.
    18. Han, Jincang & Cheng, Zhengxing & Chen, Qingjiang, 2009. "A study of biorthogonal multiple vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1574-1587.
    19. Materassi, Massimo & Wernik, Andrzej W. & Yordanova, Emiliya, 2006. "Statistics in the p-model," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 642-655.
    20. He, Ji-Huan, 2007. "Shrinkage of body size of small insects: A possible link to global warming?," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 727-729.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:1:p:190-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.