IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i2p586-598.html
   My bibliography  Save this article

Chaos in a dynamic model of urban transportation network flow based on user equilibrium states

Author

Listed:
  • Xu, Meng
  • Gao, Ziyou

Abstract

In this study, we investigate the dynamical behavior of network traffic flow. We first build a two-stage mathematical model to analyze the complex behavior of network flow, a dynamical model, which is based on the dynamical gravity model proposed by Dendrinos and Sonis [Dendrinos DS, Sonis M. Chaos and social-spatial dynamic. Berlin: Springer-Verlag; 1990] is used to estimate the number of trips. Considering the fact that the Origin–Destination (O–D) trip cost in the traffic network is hard to express as a functional form, in the second stage, the user equilibrium network assignment model was used to estimate the trip cost, which is the minimum cost of used path when user equilibrium (UE) conditions are satisfied. It is important to use UE to estimate the O–D cost, since a connection is built among link flow, path flow, and O–D flow. The dynamical model describes the variations of O–D flows over discrete time periods, such as each day and each week. It is shown that even in a system with dimensions equal to two, chaos phenomenon still exists. A “Chaos Propagation” phenomenon is found in the given model.

Suggested Citation

  • Xu, Meng & Gao, Ziyou, 2009. "Chaos in a dynamic model of urban transportation network flow based on user equilibrium states," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 586-598.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:586-598
    DOI: 10.1016/j.chaos.2007.01.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907001920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.01.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    2. Anna Nagurney & Ding Zhang, 1997. "Projected Dynamical Systems in the Formulation, Stability Analysis, and Computation of Fixed-Demand Traffic Network Equilibria," Transportation Science, INFORMS, vol. 31(2), pages 147-158, May.
    3. D. Zhang & A. Nagurney, 1997. "Formulation, Stability, and Computation of Traffic Network Equilibria as Projected Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 417-444, May.
    4. Horowitz, Joel L., 1984. "The stability of stochastic equilibrium in a two-link transportation network," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 13-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Ren-Yong & Huang, Hai-Jun, 2009. "Chaos and bifurcation in dynamical evolution process of traffic assignment with flow “mutation”," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1150-1157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    2. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
    3. He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2010. "A link-based day-to-day traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 597-608, May.
    4. Xiaomei Zhao & Chunhua Wan & Jun Bi, 2019. "Day-to-Day Assignment Models and Traffic Dynamics Under Information Provision," Networks and Spatial Economics, Springer, vol. 19(2), pages 473-502, June.
    5. Jin, Wen-Long, 2007. "A dynamical system model of the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 32-48, January.
    6. Han, Linghui & Wang, David Z.W. & Lo, Hong K. & Zhu, Chengjuan & Cai, Xingju, 2017. "Discrete-time day-to-day dynamic congestion pricing scheme considering multiple equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 1-16.
    7. Huijun Sun & Si Zhang & Linghui Han & Xiaomei Zhao & Lu Lou, 2020. "Day-to-Day Evolution Model Based on Dynamic Reference Point with Heterogeneous Travelers," Networks and Spatial Economics, Springer, vol. 20(4), pages 935-961, December.
    8. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
    9. Liu, Wei & Geroliminis, Nikolas, 2017. "Doubly dynamics for multi-modal networks with park-and-ride and adaptive pricing," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 162-179.
    10. Guo, Xiaolei & Liu, Henry X., 2011. "Bounded rationality and irreversible network change," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1606-1618.
    11. Zhang, Ding & Nagurney, Anna & Wu, Jiahao, 2001. "On the equivalence between stationary link flow patterns and traffic network equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 731-748, September.
    12. Wen-Long Jin, 2020. "Stable Day-to-Day Dynamics for Departure Time Choice," Transportation Science, INFORMS, vol. 54(1), pages 42-61, January.
    13. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    14. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
    15. Feng Xiao & Minyu Shen & Zhengtian Xu & Ruijie Li & Hai Yang & Yafeng Yin, 2019. "Day-to-Day Flow Dynamics for Stochastic User Equilibrium and a General Lyapunov Function," Transportation Science, INFORMS, vol. 53(3), pages 683-694, May.
    16. Yang, Fan & Zhang, Ding, 2009. "Day-to-day stationary link flow pattern," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 119-126, January.
    17. Xing Gao & Weijun Zhong & Shue Mei, 2013. "Stochastic Evolutionary Game Dynamics and Their Selection Mechanisms," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 233-247, February.
    18. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    19. Wang, Jian & He, Xiaozheng & Peeta, Srinivas, 2016. "Sensitivity analysis based approximation models for day-to-day link flow evolution process," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 35-53.
    20. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:586-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.