IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v33y2007i3p929-939.html
   My bibliography  Save this article

Synchronization and anti-synchronization for chaotic systems

Author

Listed:
  • Song, Qiankun
  • Cao, Jinde

Abstract

Based on a suitable separation method, combined with the Lyapunov stability and the matrix measure theory, the complete synchronization and anti-synchronization for chaotic systems are investigated. Several sufficient conditions and some necessary and sufficient conditions are obtained respectively. It is proved that these criteria not only are easily verified, but also improve and generalize previously known results, since an adjustable non-singular matrix is given. They are of great significance in the design and applications of synchronization and anti-synchronization of chaotic systems. Two examples are given to show the effectiveness of the proposed method.

Suggested Citation

  • Song, Qiankun & Cao, Jinde, 2007. "Synchronization and anti-synchronization for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 929-939.
  • Handle: RePEc:eee:chsofr:v:33:y:2007:i:3:p:929-939
    DOI: 10.1016/j.chaos.2006.01.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906001135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.01.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Bin & Chen, Guanrong & Teo, Kok Lay & Liu, Xinzhi, 2005. "Robust global exponential synchronization of general Lur’e chaotic systems subject to impulsive disturbances and time delays," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1629-1641.
    2. Cao, Jinde & Li, H.X. & Ho, Daniel W.C., 2005. "Synchronization criteria of Lur’e systems with time-delay feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1285-1298.
    3. Cheng, Chao-Jung & Liao, Teh-Lu & Hwang, Chi-Chuan, 2005. "Exponential synchronization of a class of chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 197-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priyanka, K. Sri Raja & Soundararajan, G. & Kashkynbayev, Ardak & Nagamani, G., 2023. "Exponential H∞ synchronization and anti-synchronization of delayed discrete-time complex-valued neural networks with uncertainties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 301-321.
    2. Israr Ahmad & Azizan Bin Saaban & Adyda Binti Ibrahim & Mohammad Shahzad, 2015. "Robust Finite-Time Anti-Synchronization of Chaotic Systems with Different Dimensions," Mathematics, MDPI, vol. 3(4), pages 1-19, December.
    3. Zhang, Yinping & Sun, Jitao, 2009. "Robust synchronization of coupled delayed neural networks under general impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1476-1480.
    4. He, Guangming & Yang, Jingyu, 2008. "Adaptive synchronization in nonlinearly coupled dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1254-1259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Juanhui & Cui, Baotong, 2018. "State estimation of chaotic Lurie system with logarithmic quantization," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 141-148.
    2. Zhu, Wei & Xu, Daoyi & Huang, Yumei, 2008. "Global impulsive exponential synchronization of time-delayed coupled chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 904-912.
    3. Park, Ju H. & Kwon, O.M., 2009. "Global stability for neural networks of neutral-type with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1174-1181.
    4. Cheng, Chun-Kai & Kuo, Hang-Hong & Hou, Yi-You & Hwang, Chi-Chuan & Liao, Teh-Lu, 2008. "Robust chaos synchronization of noise-perturbed chaotic systems with multiple time-delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3093-3102.
    5. Liu, Haoliang & Zhang, Taixiang & Li, Xiaodi, 2021. "Event-triggered control for nonlinear systems with impulse effects," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    6. Lu, Hongtao & van Leeuwen, C., 2006. "Synchronization of chaotic neural networks via output or state coupling," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 166-176.
    7. Baluni, Sapna & Sehgal, Ishani & Yadav, Vijay K. & Das, Subir, 2024. "Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Wang, Jiang & Zhang, Ting & Che, Yanqiu, 2007. "Chaos control and synchronization of two neurons exposed to ELF external electric field," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 839-850.
    9. Yan, Jun-Juh & Lin, Jui-Sheng & Liao, Teh-Lu, 2007. "Robust dynamic compensator for a class of time delay systems containing saturating control input," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1223-1231.
    10. Li, Tao & Fei, Shu-min & Zhang, Kan-jian, 2008. "Synchronization control of recurrent neural networks with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 982-996.
    11. Lu, Junwei & Guo, Yiqian & Xu, Shengyuan, 2006. "Global asymptotic stability analysis for cellular neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 349-353.
    12. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    13. He, Guangming & Yang, Jingyu, 2008. "Adaptive synchronization in nonlinearly coupled dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1254-1259.
    14. D. H. Ji & Ju H. Park & S. M. Lee & J. H. Koo & S. C. Won, 2010. "Synchronization Criterion for Lur’e Systems via Delayed PD Controller," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 298-317, November.
    15. Zhang, Zhi-Ming & He, Yong & Wu, Min & Wang, Qing-Guo, 2017. "Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 121-132.
    16. Kuetche Mbe, E.S. & Fotsin, H.B. & Kengne, J. & Woafo, P., 2014. "Parameters estimation based adaptive Generalized Projective Synchronization (GPS) of chaotic Chua’s circuit with application to chaos communication by parametric modulation," Chaos, Solitons & Fractals, Elsevier, vol. 61(C), pages 27-37.
    17. Yang, Te & Wang, Zhen & Huang, Xia & Xia, Jianwei, 2022. "Sampled-data exponential synchronization of Markovian jump chaotic Lur'e systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    18. Zhang, Hongmei & Cao, Jinde & Xiong, Lianglin, 2019. "Novel synchronization conditions for time-varying delayed Lur’e system with parametric uncertainty," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 224-236.
    19. Sheng, Li & Yang, Huizhong & Lou, Xuyang, 2009. "Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 930-939.
    20. Wang, Weiping & Jia, Xiao & Luo, Xiong & Kurths, Jürgen & Yuan, Manman, 2019. "Fixed-time synchronization control of memristive MAM neural networks with mixed delays and application in chaotic secure communication," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 85-96.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:33:y:2007:i:3:p:929-939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.