IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v24y2005i2p653-657.html
   My bibliography  Save this article

Higgs number from anomaly cancellation and super Riemann tensor

Author

Listed:
  • El Naschie, M.S.

Abstract

It is shown that the number of elementary particles at an energy scale which is modestly above that of the electro weak unification may be determined from a very simple equation. The said equation is obtained via a minor modification and reinterpretation of the Green–Schwarz necessary condition for anomaly cancellation and the Riemann tensor in eight dimensional space.

Suggested Citation

  • El Naschie, M.S., 2005. "Higgs number from anomaly cancellation and super Riemann tensor," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 653-657.
  • Handle: RePEc:eee:chsofr:v:24:y:2005:i:2:p:653-657
    DOI: 10.1016/j.chaos.2004.09.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904006460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.09.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2005. "Anomaly cancellation and the mass spectrum of ε(∞)," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 1087-1090.
    2. El Naschie, M.S., 2005. "The Higgs and the expectation value of the number of elementary particles in a supersymmetric extensions of the standard model of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 23(2), pages 363-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek-Crnjac, L., 2006. "Different Higgs models and the number of Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 575-579.
    2. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    3. Marek-Crnjac, L., 2008. "The connection between the order of simple groups and the maximum number of elementary particles," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 641-644.
    4. He, Ji-Huan, 2007. "The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 346-351.
    5. El Naschie, M.S., 2005. "Spinorial content of the standard model, a different look at super-symmetry and fuzzy E-infinity hyper Kähler," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 303-311.
    6. El Naschie, M.S., 2005. "Determining the mass of the Higgs and the electroweak bosons," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 899-905.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2007. "E-Infinity theory and the Higgs field," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 782-786.
    2. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    3. El Naschie, M.S., 2005. "Experimental and theoretical arguments for the number and the mass of the Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1091-1098.
    4. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    5. El Naschie, M.S., 2005. "Tadpoles, anomaly cancellation and the expectation value of the number of the Higgs particles in the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 659-663.
    6. Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
    7. Tanaka, Yosuke, 2008. "Hadron mass, Regge pole model and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 1-15.
    8. Tanaka, Yosuke, 2007. "The mass spectrum of heavier hadrons and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 996-1007.
    9. Mahmoud, I.S., 2006. "The Higgs mass using E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 263-268.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:24:y:2005:i:2:p:653-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.