IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics096007792401138x.html
   My bibliography  Save this article

Schauder’s fixed point theorem approach for stability analysis of nonlinear fractional difference equations

Author

Listed:
  • Sharma, Anshul
  • Mishra, S.N.
  • Shukla, Anurag

Abstract

Analyzing the stability of solutions is a key qualitative aspect of discrete fractional calculus, with many applications. This paper explores a type of discrete equation that incorporates a Hilfer-like fractional difference. We use Picard’s iteration method and Schauder’s fixed point theorem to establish results concerning the existence and uniqueness of solutions. Additionally, we examine both attractive stability and Ulam–Hyers stability for the proposed system. To illustrate our findings, we provide three examples that demonstrate how the main results are verified.

Suggested Citation

  • Sharma, Anshul & Mishra, S.N. & Shukla, Anurag, 2024. "Schauder’s fixed point theorem approach for stability analysis of nonlinear fractional difference equations," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s096007792401138x
    DOI: 10.1016/j.chaos.2024.115586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401138X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. D. Qassim & K. M. Furati & N.-E. Tatar, 2012. "On a Differential Equation Involving Hilfer-Hadamard Fractional Derivative," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-17, June.
    2. Abbas, Saïd & Benchohra, Mouffak & Lazreg, Jamal-Eddine & Zhou, Yong, 2017. "A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 47-71.
    3. M. D. Kassim & N.-E. Tatar, 2013. "Well-Posedness and Stability for a Differential Problem with Hilfer-Hadamard Fractional Derivative," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Radhakrishnan & T. Sathya, 2022. "Controllability of Hilfer Fractional Langevin Dynamical System with Impulse in an Abstract Weighted Space," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 265-281, October.
    2. Dhayal, Rajesh & Zhu, Quanxin, 2023. "Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Saïd Abbas & Nassir Al Arifi & Mouffak Benchohra & Yong Zhou, 2019. "Random Coupled Hilfer and Hadamard Fractional Differential Systems in Generalized Banach Spaces," Mathematics, MDPI, vol. 7(3), pages 1-15, March.
    4. Cai, Ruiyang & Ge, Fudong & Chen, YangQuan & Kou, Chunhai, 2019. "Regional observability for Hadamard-Caputo time fractional distributed parameter systems," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 190-202.
    5. Panda, Sumati Kumari & Vijayakumar, Velusamy, 2023. "Results on finite time stability of various fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Jiqiang Jiang & Donal O’Regan & Jiafa Xu & Yujun Cui, 2019. "Positive Solutions for a Hadamard Fractional p -Laplacian Three-Point Boundary Value Problem," Mathematics, MDPI, vol. 7(5), pages 1-20, May.
    7. Ben Makhlouf, Abdellatif & Mchiri, Lassaad, 2022. "Some results on the study of Caputo–Hadamard fractional stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Abbas, Saïd & Benchohra, Mouffak & Lazreg, Jamal-Eddine & Zhou, Yong, 2017. "A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 47-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s096007792401138x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.