IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924008816.html
   My bibliography  Save this article

Three-dimensional solitons supported by the spin–orbit coupling and Rydberg–Rydberg interactions in PT-symmetric potentials

Author

Listed:
  • Zhao, Yuan
  • Huang, Qihong
  • Gong, Tixian
  • Xu, Siliu
  • Li, Zeping
  • Malomed, Boris A.

Abstract

Excited states (ESs) of two- and three-dimensional (2D and 3D) solitons of the semivortex (SV) and mixed-mode (MM) types, supported by the interplay of the spin–orbit coupling (SOC) and local nonlinearity in binary Bose–Einstein condensates, are unstable, on the contrary to the stability of the SV and MM solitons in their fundamental states. We propose a stabilization strategy for these states in 3D, combining SOC and long-range Rydberg–Rydberg interactions (RRI), in the presence of a spatially-periodic potential, that may include a parity-time (PT)-symmetric component. ESs of the SV solitons, which carry integer vorticities S and S+1 in their two components, exhibit robustness up to S=4. ESs of MM solitons feature an interwoven necklace-like structure, with the components carrying opposite fractional values of the orbital angular momentum. Regions of the effective stability of the 3D solitons of the SV and MM types (both fundamental ones and ESs), are identified as functions of the imaginary component of the PT-symmetric potential and strengths of the SOC and RRI terms.

Suggested Citation

  • Zhao, Yuan & Huang, Qihong & Gong, Tixian & Xu, Siliu & Li, Zeping & Malomed, Boris A., 2024. "Three-dimensional solitons supported by the spin–orbit coupling and Rydberg–Rydberg interactions in PT-symmetric potentials," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924008816
    DOI: 10.1016/j.chaos.2024.115329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin Li & A Kuzmich, 2016. "Quantum memory with strong and controllable Rydberg-level interactions," Nature Communications, Nature, vol. 7(1), pages 1-5, December.
    2. H. Gorniaczyk & C. Tresp & P. Bienias & A. Paris-Mandoki & W. Li & I. Mirgorodskiy & H. P. Büchler & I. Lesanovsky & S. Hofferberth, 2016. "Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances," Nature Communications, Nature, vol. 7(1), pages 1-6, November.
    3. Malomed, B.A., 2022. "Multidimensional dissipative solitons and solitary vortices," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Liangwei & Fan, Mingjing & Malomed, Boris A., 2024. "Stable higher-order vortex quantum droplets in an annular potential," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Otajonov, Sherzod R. & Umarov, Bakhram A. & Abdullaev, Fatkhulla Kh., 2024. "Dynamics of quasi-one-dimensional quantum droplets in Bose–Bose mixtures," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    4. Signé, Eric Martial & Djazet, Alain & Megne, Laure Tiam & Djoko, Martin & Fewo, Serge I. & Kofané, Timoléon C., 2024. "Light beams of the (3+1)D complex Ginzburg–Landau equation induced by the interaction between the external potential and higher-order nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    5. Chen, Junbo & Mihalache, Dumitru & Belić, Milivoj R. & Gao, Xuzhen & Zhu, Danfeng & Deng, Dingnan & Qiu, Shaobin & Zhu, Xing & Zeng, Liangwei, 2024. "Composite solitons in spin–orbit-coupled Bose–Einstein condensates within optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    6. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Djazet, Alain & Fewo, Serge I. & Djoko, Martin & Felenou, E. Tchomgo & Kofané, Timoléon C., 2023. "Extension of the stability criterion for dissipative vector solitons of a laser coupled two-dimensional Ginzburg–Landau Equation generated from vector asymmetric inputs," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    8. Kong, Chao & Li, Jinqing & Tang, Xinyi & Li, Xuli & Jiao, Ju & Cao, Jun & Deng, Haiming, 2024. "Composite solitary vortices of three-wave mixing in quasi-phase-matched photonic crystals," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    9. Wang, Qing & Zhu, Junying & Wang, Jun & Yu, Haiyan & Hu, Beibei, 2024. "Controllable trajectory and shape of Hermite-Gaussian soliton clusters," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    10. Chen, Zhiming & Liu, Xiuye & Xie, Hongqiang & Zeng, Jianhua, 2024. "Three-dimensional Bose–Einstein gap solitons in optical lattices with fractional diffraction," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    11. Mahfoudi, Narimene & Bouguerra, Abdesselam & Triki, Houria & Azzouzi, Faiçal & Biswas, Anjan & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2024. "Chirped self-similar optical solitons with cubic–quintic–septic–nonic form of self-phase modulation," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    12. Li, Chunyan & Konotop, Vladimir V. & Malomed, Boris A. & Kartashov, Yaroslav V., 2023. "Bound states in Bose-Einstein condensates with radially-periodic spin-orbit coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Higher-charged vortex solitons in harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    14. Xu, Yinshen & Li, Peixin & Mihalache, Dumitru & He, Jingsong, 2023. "Resonant collisions among multi-breathers in the Mel’nikov system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    15. Al-Marzoug, S.M. & Baizakov, B.B. & Bahlouli, H., 2023. "Two-dimensional symbiotic solitons and quantum droplets in a quasi-one-dimensional optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    16. Manoj Mishra & Kirti Meena & Divya Yadav & Brajraj Singh & Soumendu Jana, 2023. "The dynamics, stability and modulation instability of Gaussian beams in nonlocal nonlinear media," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-13, August.
    17. Díaz, P. & Molinares, H. & Pérez, L.M. & Laroze, D. & Bragard, J. & Malomed, B.A., 2024. "Stable semivortex gap solitons in a spin–orbit-coupled Fermi gas," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    18. Wang, Qing & Zhou, Liangliang & Zhu, Junying & He, Jun-Rong, 2024. "Multi-vortex beams in nonlinear media with harmonic potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    19. Yakup Yıldırım & Anjan Biswas & Luminita Moraru & Abdulah A. Alghamdi, 2023. "Quiescent Optical Solitons for the Concatenation Model with Nonlinear Chromatic Dispersion," Mathematics, MDPI, vol. 11(7), pages 1-25, April.
    20. Ding, Cui-Cui & Zhou, Qin & Xu, Si-Liu & Sun, Yun-Zhou & Liu, Wen-Jun & Mihalache, Dumitru & Malomed, Boris A., 2023. "Controlled nonautonomous matter–wave solitons in spinor Bose–Einstein condensates with spatiotemporal modulation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924008816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.