IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004569.html
   My bibliography  Save this article

On the transient and equilibrium features of growing fractal complex networks

Author

Listed:
  • Benatti, Alexandre
  • da F. Costa, Luciano

Abstract

Complex networks have certain properties that distinguish them from their respective uniform or regular counterparts. One of these properties is the variation of topological properties along different hierarchical levels. In this work, we study how networks that are constructed by repeatedly incorporating a given motif exhibit this property. A motif is henceforth understood as a small subgraph with a reference node where the incorporation respectively occurs. We generate fractal networks using different motifs and observe how their structures change along the growth stages. Two regimes are respectively identified: transient and equilibrium. The former is characterized by significant topological changes that depend on the motif topology, while the equilibrium regime shows more stable, parallel trajectories. A more systematic analysis revealed that the betweenness centrality and the average shortest path lengths were the main topological properties accounting for the changes along the network growth.

Suggested Citation

  • Benatti, Alexandre & da F. Costa, Luciano, 2024. "On the transient and equilibrium features of growing fractal complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004569
    DOI: 10.1016/j.chaos.2024.114904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    2. Nagatani, Takashi, 2023. "Successive jamming transitions in traffic flow on directed Sierpinski gasket," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Carletti, Timoteo & Righi, Simone, 2010. "Weighted Fractal Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2134-2142.
    4. Barabási, Albert-László & Ravasz, Erzsébet & Vicsek, Tamás, 2001. "Deterministic scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(3), pages 559-564.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    2. Sun, Lina & Huang, Ning & Li, Ruiying & Bai, Yanan, 2019. "A new fractal reliability model for networks with node fractal growth and no-loop," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 699-707.
    3. Zeng, Cheng & Xue, Yumei & Huang, Yuke, 2021. "Fractal networks with Sturmian structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    4. Huang, Da-Wen & Yu, Zu-Guo & Anh, Vo, 2017. "Multifractal analysis and topological properties of a new family of weighted Koch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 695-705.
    5. Zong, Yue & Dai, Meifeng & Wang, Xiaoqian & He, Jiaojiao & Zou, Jiahui & Su, Weiyi, 2018. "Network coherence and eigentime identity on a family of weighted fractal networks," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 184-194.
    6. Knor, Martin & Škrekovski, Riste, 2013. "Deterministic self-similar models of complex networks based on very symmetric graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4629-4637.
    7. Chen, Mu & Yu, Boming & Xu, Peng & Chen, Jun, 2007. "A new deterministic complex network model with hierarchical structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 707-717.
    8. Le, Anbo & Gao, Fei & Xi, Lifeng & Yin, Shuhua, 2015. "Complex networks modeled on the Sierpinski gasket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 646-657.
    9. Carletti, Timoteo & Righi, Simone, 2010. "Weighted Fractal Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2134-2142.
    10. Wei, Bo & Deng, Yong, 2019. "A cluster-growing dimension of complex networks: From the view of node closeness centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 80-87.
    11. Ye, Dandan & Dai, Meifeng & Sun, Yu & Su, Weiyi, 2017. "Average weighted receiving time on the non-homogeneous double-weighted fractal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 390-402.
    12. Dai, Meifeng & Shao, Shuxiang & Su, Weiyi & Xi, Lifeng & Sun, Yanqiu, 2017. "The modified box dimension and average weighted receiving time of the weighted hierarchical graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 46-58.
    13. Wu, Zhenxing & Lu, Xi & Deng, Yong, 2015. "Image edge detection based on local dimension: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 9-18.
    14. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    15. Yu-Hsiang Fu & Chung-Yuan Huang & Chuen-Tsai Sun, 2017. "A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-30, November.
    16. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    17. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    18. Ikeda, Nobutoshi, 2019. "Growth model for fractal scale-free networks generated by a random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 424-434.
    19. Yang, Qing-Lin & Wang, Li-Fu & Zhao, Guo-Tao & Guo, Ge, 2020. "A coarse graining algorithm based on m-order degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    20. Dangalchev, Chavdar, 2004. "Generation models for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 659-671.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.