IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000389.html
   My bibliography  Save this article

Identifying critical nodes in complex networks based on distance Laplacian energy

Author

Listed:
  • Yin, Rongrong
  • Li, Linhui
  • Wang, Yumeng
  • Lang, Chun
  • Hao, Zhenyang
  • Zhang, Le

Abstract

Identifying critical nodes in complex networks is a fundamental problem, it plays a crucial role in stabilizing the performance of the network structure and propagating information. Majority of the existing studies are built by directly considering the topology of the network. In this paper, a new vertex centrality called distance Laplacian centrality (DLC) is proposed for critical nodes identification from the perspective of graph energy. This method incorporates the vertex’s transfer degree, considers the position of nodes in the network from a global perspective, and measures the importance of a node using the relative variation of the distance Laplacian energy responding to the deletion of the node from the network. To validate the performance and applicability of the proposed method, this paper compares DLC with other methods through susceptible-infected-recovered (SIR) model on different real networks. The experimental results demonstrate that DLC has better performance in terms of influence, distinguishing ability relevance and ranking accuracy, and can effectively recognize critical nodes in complex networks.

Suggested Citation

  • Yin, Rongrong & Li, Linhui & Wang, Yumeng & Lang, Chun & Hao, Zhenyang & Zhang, Le, 2024. "Identifying critical nodes in complex networks based on distance Laplacian energy," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000389
    DOI: 10.1016/j.chaos.2024.114487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Duan-Bing Chen & Hui Gao & Linyuan Lü & Tao Zhou, 2013. "Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    4. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    5. Karen E Joyce & Paul J Laurienti & Jonathan H Burdette & Satoru Hayasaka, 2010. "A New Measure of Centrality for Brain Networks," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-13, August.
    6. Wang, Zhuoyang & Chen, Guo & Liu, Long & Hill, David J., 2020. "Cascading risk assessment in power-communication interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Zhou, Yaoming & Wang, Junwei & Huang, George Q., 2019. "Efficiency and robustness of weighted air transport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 14-26.
    8. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    9. Ma, Yue & Cao, Zhulou & Qi, Xingqin, 2019. "Quasi-Laplacian centrality: A new vertex centrality measurement based on Quasi-Laplacian energy of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Shuying & Sun, Shaowei, 2023. "Identification of node centrality based on Laplacian energy of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    3. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    4. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    5. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    6. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Yeruva, Sujatha & Devi, T. & Reddy, Y. Samtha, 2016. "Selection of influential spreaders in complex networks using Pareto Shell decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 133-144.
    8. Kumar, Sanjay & Panda, B.S., 2020. "Identifying influential nodes in Social Networks: Neighborhood Coreness based voting approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    9. Zhe Li & Xinyu Huang, 2023. "Identifying Influential Spreaders Using Local Information," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    10. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    11. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    13. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    14. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    15. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    16. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    18. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    19. Wang, Junyi & Hou, Xiaoni & Li, Kezan & Ding, Yong, 2017. "A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 88-105.
    20. Ai, Jun & He, Tao & Su, Zhan, 2023. "Identifying influential nodes in complex networks based on resource allocation similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.