IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v179y2024ics0960077924000043.html
   My bibliography  Save this article

Stealthy FDI attacks on modified Kalman filtering in complex networks with non-Gaussian-Lévy noise

Author

Listed:
  • Yuan, Wenying
  • Tong, Tianchi
  • Dong, Qian
  • Sun, Jinsheng

Abstract

This paper investigates the problem of network security for stealthy false data injection (FDI) attacks under modified Kalman filtering (MKF) over complex networks with non-Gaussian-Lévy noise (NGLN). Initially, a modified Kalman filter (MKFR) is proposed to estimate system states, where the estimation function is related to the probabilistic characteristics of Lévy noise, and the saturation threshold is designed in relation to Lévy noise parameters. The upper bound of error covariance is obtained, and the boundedness of the upper bound is proven through the use of mathematical induction and iterative methods. Second, based on the MKF, this paper proposes a two-channel stealthy FDI attacks (TSFAs) strategy that is related only to the system model, which is injected into the sensor-to-controller (S-C) and controller-to-actuator (C-A) transmission channels at the same time. In addition, the attacker sets two MKFRs as observers to estimate the states of the target system, which are used to adjust the attack signal. Third, a sufficient condition is obtained that demonstrates the stability of the system. Meanwhile, TSFAs can avoid being detected by the residual-based detector to guarantee stealthiness. Finally, the effectiveness of the MKF is verified by the numerical simulation, and the stealthiness of the TSFAs and the impact on the system stability are also demonstrated.

Suggested Citation

  • Yuan, Wenying & Tong, Tianchi & Dong, Qian & Sun, Jinsheng, 2024. "Stealthy FDI attacks on modified Kalman filtering in complex networks with non-Gaussian-Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077924000043
    DOI: 10.1016/j.chaos.2024.114453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Dong & Tang, Ze & Wang, Yan & Ji, Zhicheng, 2020. "Synchronization of nonlinearly coupled complex networks: Distributed impulsive method," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. An, Xin-lei & Zhang, Li & Zhang, Jian-gang, 2015. "Research on urban public traffic network with multi-weights based on single bus transfer junction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 748-755.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Haoliang & Zhang, Taixiang & Li, Xiaodi, 2021. "Event-triggered control for nonlinear systems with impulse effects," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Guo, Beibei & Xiao, Yu, 2023. "Intermittent synchronization for multi-link and multi-delayed large-scale systems with semi-Markov jump and its application of Chua’s circuits," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Zhang, Chunmei & Han, Bang-Sheng, 2020. "Stability analysis of stochastic delayed complex networks with multi-weights based on Razumikhin technique and graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    5. Bin Yang & Xin Wang & Yongju Zhang & Yuhua Xu & Wuneng Zhou, 2019. "Finite-Time Synchronization and Synchronization Dynamics Analysis for Two Classes of Markovian Switching Multiweighted Complex Networks from Synchronization Control Rule Viewpoint," Complexity, Hindawi, vol. 2019, pages 1-17, March.
    6. Zhang, Chunmei & Chen, Tianrui, 2018. "Exponential stability of stochastic complex networks with multi-weights based on graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 602-611.
    7. Dong, Shiyu & Shi, Kaibo & Wen, Shiping & Shen, Yuan & Zhong, Shouming, 2023. "Almost surely synchronization of directed coupled neural networks via stochastic distributed delayed impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Chen, Siyuan & Qin, Shaoyang, 2022. "Identifying the critical road combination in urban roads network under multiple disruption scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Qin, Shaoyang, 2022. "Exploring the robustness of public transportation system on augmented network: A case from Nanjing China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    10. Bin Yang & Xin Wang & Jian-an Fang & Yuhua Xu, 2019. "The Impact of Coupling Function on Finite-Time Synchronization Dynamics of Multi-Weighted Complex Networks with Switching Topology," Complexity, Hindawi, vol. 2019, pages 1-15, March.
    11. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    12. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Sun, Yanqin & Wu, Huaiyu & Chen, Zhihuan & Zheng, Xiujuan & Chen, Yang, 2021. "Outer synchronization of two different multi-links complex networks by chattering-free control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    14. Zhang, Chunmei & Yang, Yinghui, 2020. "Synchronization of stochastic multi-weighted complex networks with Lévy noise based on graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Wei, Sheng & Zheng, Wei & Wang, Lei, 2021. "Understanding the configuration of bus networks in urban China from the perspective of network types and administrative division effect," Transport Policy, Elsevier, vol. 104(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077924000043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.