IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011517.html
   My bibliography  Save this article

Geometrical exponents of contour loops on ballistic deposition model with power-law distributed noise

Author

Listed:
  • Rahimi, M.
  • Hosseinabadi, S.
  • Masoudi, A.A.

Abstract

In this paper, we study geometrical properties of contour loops to characterize the morphology of the porous ballistic deposition model with power-law distributed noise. In this model, rod-like particles with variable lengths instead of homogeneous particles are deposited, the length of each rod, l, is determined by a power-law distribution, P(l)∼l−(μ+1), and μ indicates the power-law strength exponent. The accumulation of rods with different lengths leads to a porous structure. The porous structure is converted into contour loops by using the Hoshen–Kopelman algorithm and the complexity and fractal features of the loops are investigated. On the other hand, the distributions of loops indicating the porosity distribution of the growth rough surfaces are investigated. The fractal dimension of the contour set, d, the fractal dimension of each loop, Df, cumulative distributions exponent of areas, ξ, and the perimeter distribution exponent, τ, are calculated for the investigated porous structures. Our results show that enhancement of μ exponent and appearance of the Gaussian ballistic deposition model leads to reduction of structure porosity and enhancement of contour loops area and perimeter. The fractal dimension of the contour set, and the fractal dimension of each loop increases by enhancement of μ exponent. Distributions of loops and geometrical exponents of contour loops in different μ exponent are determined. The results indicate that the hyperscaling relation and Zipf’s law hold for μ≥μc=3 which power-law distributed noise approaches to Gaussian one.

Suggested Citation

  • Rahimi, M. & Hosseinabadi, S. & Masoudi, A.A., 2023. "Geometrical exponents of contour loops on ballistic deposition model with power-law distributed noise," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011517
    DOI: 10.1016/j.chaos.2023.114249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Córdoba, Juan-Carlos, 2008. "On the distribution of city sizes," Journal of Urban Economics, Elsevier, vol. 63(1), pages 177-197, January.
    2. Hosseinabadi, S. & Karimi, Z. & Masoudi, A.A., 2020. "Random deposition with surface relaxation model accompanied by long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. S. K. Das & D. Banerjee & J. N. Roy, 2021. "Particle Shape-Induced Correlation Effect In Random Deposition In 1+1 Dimension And Related Effect In Ballistic Deposition," Surface Review and Letters (SRL), World Scientific Publishing Co. Pte. Ltd., vol. 28(02), pages 1-10, February.
    4. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    5. Dasgupta, Ruma & Roy, Shashwati & Tarafdar, S, 2000. "Correlation between porosity, conductivity and permeability of sedimentary rocks — a ballistic deposition model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 275(1), pages 22-32.
    6. Firas Gerges & Xiaolong Geng & Hani Nassif & Michel C. Boufadel, 2021. "Anisotropic Multifractal Scaling Of Mount Lebanon Topography: Approximate Conditioning," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    2. Ghiglino, Christian, 2012. "Random walk to innovation: Why productivity follows a power law," Journal of Economic Theory, Elsevier, vol. 147(2), pages 713-737.
    3. Teteryatnikova, Mariya, 2014. "Systemic risk in banking networks: Advantages of “tiered” banking systems," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 186-210.
    4. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    5. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    6. Tomson Ogwang, 2011. "Power laws in top wealth distributions: evidence from Canada," Empirical Economics, Springer, vol. 41(2), pages 473-486, October.
    7. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    8. SAITO Yukiko, 2013. "Role of Hub Firms in Geographical Transaction Network," Discussion papers 13080, Research Institute of Economy, Trade and Industry (RIETI).
    9. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    10. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    11. Harmenberg, Karl, 2024. "A simple theory of Pareto-distributed earnings," Economics Letters, Elsevier, vol. 234(C).
    12. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    13. Kwame Boamah‐Addo & Tomasz J. Kozubowski & Anna K. Panorska, 2023. "A discrete truncated Zipf distribution," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 156-187, May.
    14. A. B. Atkinson, 2017. "Pareto and the Upper Tail of the Income Distribution in the UK: 1799 to the Present," Economica, London School of Economics and Political Science, vol. 84(334), pages 129-156, April.
    15. di Giovanni, Julian & Levchenko, Andrei A. & Rancière, Romain, 2011. "Power laws in firm size and openness to trade: Measurement and implications," Journal of International Economics, Elsevier, vol. 85(1), pages 42-52, September.
    16. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
    17. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    18. Taiji Furusawa & Hideo Konishi & Duong Lam Anh Tran, 2020. "International Trade and Income Inequality," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(3), pages 993-1026, July.
    19. Thomas Brenner & Matthias Duschl, 2018. "Modeling Firm and Market Dynamics: A Flexible Model Reproducing Existing Stylized Facts on Firm Growth," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 745-772, October.
    20. Anthony B. Atkinson & Thomas Piketty & Emmanuel Saez, 2011. "Top Incomes in the Long Run of History," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 3-71, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.