IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011025.html
   My bibliography  Save this article

Detecting communities in higher-order networks by using their derivative graphs

Author

Listed:
  • Contreras-Aso, Gonzalo
  • Criado, Regino
  • Vera de Salas, Guillermo
  • Yang, Jinling

Abstract

Similar to what happens in the pairwise network domain, the communities of nodes of a hypergraph (also called higher-order network) are formed by groups of nodes that share many hyperedges, so that the number of hyperedges they share with the rest of the nodes is significantly smaller, and therefore these communities can be considered as independent compartments (or super-clusters) of the hypergraph. In this work we present a method, based on the so-called derivative graph of a hypergraph, which allows the detection of communities of a higher-order network without high computational cost and several simulations are presented that show the significant computational advantages of the proposed method over other existing methods.

Suggested Citation

  • Contreras-Aso, Gonzalo & Criado, Regino & Vera de Salas, Guillermo & Yang, Jinling, 2023. "Detecting communities in higher-order networks by using their derivative graphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011025
    DOI: 10.1016/j.chaos.2023.114200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. S. Evans & R. Lambiotte, 2010. "Line graphs of weighted networks for overlapping communities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(2), pages 265-272, September.
    2. L. V. Gambuzza & F. Patti & L. Gallo & S. Lepri & M. Romance & R. Criado & M. Frasca & V. Latora & S. Boccaletti, 2021. "Stability of synchronization in simplicial complexes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Martina Contisciani & Federico Battiston & Caterina De Bacco, 2022. "Inference of hyperedges and overlapping communities in hypergraphs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    5. Iglesias Pérez, Sergio & Moral-Rubio, Santiago & Criado, Regino, 2021. "A new approach to combine multiplex networks and time series attributes: Building intrusion detection systems (IDS) in cybersecurity," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    8. Partida, Alberto & Gerassis, Saki & Criado, Regino & Romance, Miguel & Giráldez, Eduardo & Taboada, Javier, 2022. "The chaotic, self-similar and hierarchical patterns in Bitcoin and Ethereum price series," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Criado-Alonso, Ángeles & Aleja, David & Romance, Miguel & Criado, Regino, 2022. "Derivative of a hypergraph as a tool for linguistic pattern analysis," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jie & Wang, Zhen & Yu, Dengxiu & Cao, Jinde & Cheong, Kang Hao, 2024. "Swarm intelligence for protecting sensitive identities in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    2. Li, Tianyu & Wu, Yong & Ding, Qianming & Xie, Ying & Yu, Dong & Yang, Lijian & Jia, Ya, 2024. "Social contagion in high-order network with mutation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Criado-Alonso, Ángeles & Aleja, David & Romance, Miguel & Criado, Regino, 2022. "Derivative of a hypergraph as a tool for linguistic pattern analysis," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    4. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    5. Zhenping Li & Xiang-Sun Zhang & Rui-Sheng Wang & Hongwei Liu & Shihua Zhang, 2013. "Discovering Link Communities in Complex Networks by an Integer Programming Model and a Genetic Algorithm," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
    6. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Zhou, Xu & Liu, Yanheng & Wang, Jian & Li, Chun, 2017. "A density based link clustering algorithm for overlapping community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 65-78.
    8. Li, Shuyu & Li, Xiang, 2023. "Influence maximization in hypergraphs: A self-optimizing algorithm based on electrostatic field," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    11. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    12. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    13. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    14. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    15. Masa Tsuchiya & Vincent Piras & Alessandro Giuliani & Masaru Tomita & Kumar Selvarajoo, 2010. "Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    16. Xu, Can & Zhai, Yun & Wu, Yonggang & Zheng, Zhigang & Guan, Shuguang, 2023. "Enhanced explosive synchronization in heterogeneous oscillator populations with higher-order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    17. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    18. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    19. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    20. Rizman Žalik, Krista & Žalik, Borut, 2014. "A local multiresolution algorithm for detecting communities of unbalanced structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 380-393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.