IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923006082.html
   My bibliography  Save this article

Long transients in discontinuous time-discrete models of population dynamics

Author

Listed:
  • Morozov, Andrew Yu.
  • Almutairi, Dalal
  • Petrovskii, Sergei V.
  • Lai, Ying-Cheng

Abstract

Traditionally, mathematical modelling of population dynamics was focused on long-term, asymptotic behaviour (systems attractors), whereas the effects of transient regimes were largely disregarded. However, recently there has been a growing appreciation of the role of transients both in empirical ecology and theoretical studies. Among the main challenges are identification of the mechanisms triggering transients in various dynamical systems and understanding of the corresponding scaling law of the transient’s lifetime; the latter is of a vital practical importance for long-term ecological forecasting and regime shifts anticipation. In this study, we reveal and investigate various patterns of long transients occurring in two generic time-discrete population models which are mathematically described by discontinuous (piece-wise) maps. In particular, we consider a single-species population model and a predator–prey system, in each model we assume that the dispersal of species at the end of each season is density dependent. For both models, we demonstrate transients due to crawl-by dynamics, chaotic repellers, chaotic saddles, ghost attractors, and a rich variety of intermittent regimes. For each type of transient, we investigate the corresponding scaling law of the transient’s lifetime. We explore the space of key model parameters, to find where particular types of long transients can be expected, and we show that long transients are omnipresent since they can be observed within a wide range of model parameters. We also reveal the possibility of complex patterns occurring as a cascade of transients of different types. We also considered a stochastic version of the model where some parameters exhibit random fluctuations. We show that stochasticity can reduce, extend or produce new patterns of long transients. We conclude that the discontinuity in population models significantly facilitates the emergence of long transients by creating new types and increasing parameter domains of the corresponding transient dynamics. Another important conclusion is that the asymptotic regime of population dynamics is hardly possible to predict based on a finite time course of species densities, which is crucial for ecosystem management and decision making.

Suggested Citation

  • Morozov, Andrew Yu. & Almutairi, Dalal & Petrovskii, Sergei V. & Lai, Ying-Cheng, 2023. "Long transients in discontinuous time-discrete models of population dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006082
    DOI: 10.1016/j.chaos.2023.113707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923006082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valenti, D. & Fiasconaro, A. & Spagnolo, B., 2004. "Stochastic resonance and noise delayed extinction in a model of two competing species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(3), pages 477-486.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Zhang & Tao Yang & Shi-Xian Qu, 2021. "Impact of time delays and environmental noise on the extinction of a population dynamics model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-16, November.
    2. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    3. Lumi, Neeme & Laas, Katrin & Mankin, Romi, 2015. "Rising relative fluctuation as a warning indicator of discontinuous transitions in symbiotic metapopulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 109-118.
    4. Zhu, Ping, 2021. "An equivalent analytical method to deal with cross-correlated exponential type noises in the nonlinear dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Wang, Min & Fang, Yuwen & Luo, Yuhui & Yang, Fengzao & Zeng, Chunhua & Duan, Wei-Long, 2019. "Influence of non-Gaussian noise on the coherent feed-forward loop with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 46-55.
    6. Vladislav Soukhovolsky & Anton Kovalev & Yulia Ivanova & Olga Tarasova, 2023. "Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    7. Wang, Yi & Cao, Jinde & Sun, Gui-Quan & Li, Jing, 2014. "Effect of time delay on pattern dynamics in a spatial epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 137-148.
    8. Mi, Li-Na & Guo, Yong-Feng & Zhang, Meng & Zhuo, Xiao-Jing, 2023. "Stochastic resonance in gene transcriptional regulatory system driven by Gaussian noise and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Varughese, M.M. & Fatti, L.P., 2008. "Incorporating environmental stochasticity within a biological population model," Theoretical Population Biology, Elsevier, vol. 74(1), pages 115-129.
    10. Bekoa, D.J. Owono & Kenfack, W. Fokou & Siewe, M. Siewe, 2022. "Dynamics of saline oscillator under sinusoidal and bounded noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Alsulami, Amer & Petrovskii, Sergei, 2023. "A model of mass extinction accounting for the differential evolutionary response of species to a climate change," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    12. Tian, Rongrong & Wei, Jinlong & Wu, Jiang-Lun, 2021. "On a generalized population dynamics equation with environmental noise," Statistics & Probability Letters, Elsevier, vol. 168(C).
    13. Gandhimathi, V.M. & Murali, K. & Rajasekar, S., 2006. "Stochastic resonance with different periodic forces in overdamped two coupled anharmonic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1034-1047.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.