IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923002722.html
   My bibliography  Save this article

A novel supply chain network evolving model under random and targeted disruptions

Author

Listed:
  • Wang, Jiepeng
  • Zhou, Hong
  • Sun, Xinlei
  • Yuan, Yufei

Abstract

Due to the fact that there is a lack of comprehensive understanding of how the dynamic nature of supply chain networks (SCNs) interrelates with network structures, particularly network topologies under disruptions. This research employs a novel evolving model of a supply chain network (SCNE model) by modifying the Barabási and Albert (BA) model to capture the phenomenon of regional economy and the factor of firms’ attractiveness, considering the degree, the locality preference, and the heterogeneity of SCN members simultaneously. We then analyze the SCNE model via the mean-field theory and conduct simulation study to identify the scale-free characteristic of the proposed supply chain network model. Additionally, we leverage node and edge removal to emulate random and targeted disruptions. We measure and compare the robustness of four network models, i.e., the SCNE model, the Erdos and Rényi (ER) model, the BA model, and the Watts and Strogatz (WS) model using two essential metrics, i.e., the size of the largest connected component and the network efficiency. We find that the robustness of the SCNE model is better than the BA model and the WS model on the whole in the presence of disruptions. Also, from the node level, the SCNE model maintains resilience, behaving similarly to the ER model against random disruptions while it shows vulnerability under targeted disruptions, responding in line with the BA model and the WS model. From the edge level, the network efficiency of the SCNE model changes slowly, and the topological structure of the SCNE model slightly changes initially but decreases rapidly at some value, as well as the BA model, the WS model, and the ER model. Based on the results, we summarize key points of the implications for research and practice in supply chain management.

Suggested Citation

  • Wang, Jiepeng & Zhou, Hong & Sun, Xinlei & Yuan, Yufei, 2023. "A novel supply chain network evolving model under random and targeted disruptions," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002722
    DOI: 10.1016/j.chaos.2023.113371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923002722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikolay Osadchiy & Vishal Gaur & Sridhar Seshadri, 2016. "Systematic Risk in Supply Chain Networks," Management Science, INFORMS, vol. 62(6), pages 1755-1777, June.
    2. Wang, Jiepeng & Zhou, Hong & Zhao, Yujie, 2022. "Behavior evolution of supply chain networks under disruption risk — From aspects of time dynamic and spatial feature," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Hiroyasu Inoue & Yasuyuki Todo, 2019. "Firm-level propagation of shocks through supply-chain networks," Nature Sustainability, Nature, vol. 2(9), pages 841-847, September.
    4. Tobias Bier & Anne Lange & Christoph H. Glock, 2020. "Methods for mitigating disruptions in complex supply chain structures: a systematic literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 58(6), pages 1835-1856, March.
    5. Dazhong Wu & Joe Teng & Sergey Ivanov & Julius Anyu, 2021. "Empirical Assessment of Bullwhip Effect in Supply Networks," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 14(2), pages 69-87, April.
    6. Xiao-qiu Shi & Wei Long & Yan-yan Li & Ding-shan Deng & Yong-lai Wei & Hua-guo Liu, 2020. "Research on supply network resilience considering random and targeted disruptions simultaneously," International Journal of Production Research, Taylor & Francis Journals, vol. 58(21), pages 6670-6688, November.
    7. Belarmino Adenso-Díaz & Julio Mar-Ortiz & Sebastián Lozano, 2018. "Assessing supply chain robustness to links failure," International Journal of Production Research, Taylor & Francis Journals, vol. 56(15), pages 5104-5117, August.
    8. Hou, Yunzhang & Wang, Xiaoling & Wu, Yenchun Jim & He, Peixu, 2018. "How does the trust affect the topology of supply chain network and its resilience? An agent-based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 229-241.
    9. Reyes Levalle, Rodrigo & Nof, Shimon Y., 2015. "Resilience by teaming in supply network formation and re-configuration," International Journal of Production Economics, Elsevier, vol. 160(C), pages 80-93.
    10. Berger, Niklas & Schulze-Schwering, Stefan & Long, Elisa & Spinler, Stefan, 2023. "Risk management of supply chain disruptions: An epidemic modeling approach," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1036-1051.
    11. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    12. Ledwoch, Anna & Yasarcan, Hakan & Brintrup, Alexandra, 2018. "The moderating impact of supply network topology on the effectiveness of risk management," International Journal of Production Economics, Elsevier, vol. 197(C), pages 13-26.
    13. Xiao, Zhongdong & Zhou, Guanghui & Wang, Ben, 2012. "Using modified Barabási and Albert model to study the complex logistic network in eco-industrial systems," International Journal of Production Economics, Elsevier, vol. 140(1), pages 295-304.
    14. Jihee Han & KwangSup Shin, 2016. "Evaluation mechanism for structural robustness of supply chain considering disruption propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 135-151, January.
    15. Li, Yuhong & Chen, Kedong & Collignon, Stephane & Ivanov, Dmitry, 2021. "Ripple effect in the supply chain network: Forward and backward disruption propagation, network health and firm vulnerability," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1117-1131.
    16. Goh, Mark & Lim, Joseph Y.S. & Meng, Fanwen, 2007. "A stochastic model for risk management in global supply chain networks," European Journal of Operational Research, Elsevier, vol. 182(1), pages 164-173, October.
    17. Wang, Jiepeng & Zhou, Hong & Jin, Xiaodan, 2021. "Risk transmission in complex supply chain network with multi-drivers," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    18. Alessandro Lomi & Philippa Pattison, 2006. "Manufacturing Relations: An Empirical Study of the Organization of Production Across Multiple Networks," Organization Science, INFORMS, vol. 17(3), pages 313-332, June.
    19. Lawrence V. Snyder & Zümbül Atan & Peng Peng & Ying Rong & Amanda J. Schmitt & Burcu Sinsoysal, 2016. "OR/MS models for supply chain disruptions: a review," IISE Transactions, Taylor & Francis Journals, vol. 48(2), pages 89-109, February.
    20. Sterman, John D., 1989. "Misperceptions of feedback in dynamic decision making," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(3), pages 301-335, June.
    21. Li, Yuhong & Zobel, Christopher W. & Seref, Onur & Chatfield, Dean, 2020. "Network characteristics and supply chain resilience under conditions of risk propagation," International Journal of Production Economics, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiepeng & Zhou, Hong & Zhao, Yujie, 2022. "Behavior evolution of supply chain networks under disruption risk — From aspects of time dynamic and spatial feature," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Giovanna Culot & Matteo Podrecca & Guido Nassimbeni & Guido Orzes & Marco Sartor, 2023. "Using supply chain databases in academic research: A methodological critique," Journal of Supply Chain Management, Institute for Supply Management, vol. 59(1), pages 3-25, January.
    3. Zhimei Lei & Li Cui & Jing Tang & Lujie Chen & Bingbing Liu, 2024. "Supply chain resilience in the context of I4.0 and I5.0 from a multilayer network ripple effect perspective," Annals of Operations Research, Springer, vol. 342(2), pages 1149-1192, November.
    4. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    5. A. V. Thomas & Biswajit Mahanty, 2021. "Dynamic assessment of control system designs of information shared supply chain network experiencing supplier disruption," Operational Research, Springer, vol. 21(1), pages 425-451, March.
    6. Jiakuan Chen & Haoyu Wen, 2023. "The application of complex network theory for resilience improvement of knowledge-intensive supply chains," Operations Management Research, Springer, vol. 16(3), pages 1140-1161, September.
    7. Bai, Xuelian & Fang, Ruirui & Henry, Elaine & Hu, Nan, 2020. "Supply chain hierarchical position and firms’ information quality," Journal of Financial Stability, Elsevier, vol. 51(C).
    8. Gökçe Esenduran & John V. Gray & Burcu Tan, 2022. "A Dynamic Analysis of Supply Chain Risk Management and Extended Payment Terms," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1394-1417, March.
    9. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    10. Berger, Niklas & Schulze-Schwering, Stefan & Long, Elisa & Spinler, Stefan, 2023. "Risk management of supply chain disruptions: An epidemic modeling approach," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1036-1051.
    11. Rana Azghandi & Jacqueline Griffin & Mohammad S. Jalali, 2018. "Minimization of Drug Shortages in Pharmaceutical Supply Chains: A Simulation-Based Analysis of Drug Recall Patterns and Inventory Policies," Complexity, Hindawi, vol. 2018, pages 1-14, December.
    12. Mu, Dong & Ren, Huanyu & Wang, Chao & Yue, Xiongping & Du, Jianbang & Ghadimi, Pezhman, 2023. "Structural characteristics and disruption ripple effect in a meso-level electric vehicle Lithium-ion battery supply chain network," Resources Policy, Elsevier, vol. 80(C).
    13. Liu, Hui & Su, Bingbing & Guo, Min & Wang, Jingbei, 2024. "Exploring R&D network resilience under risk propagation: An organizational learning perspective," International Journal of Production Economics, Elsevier, vol. 273(C).
    14. Ying Rong & Lawrence V. Snyder & Zuo‐Jun Max Shen, 2017. "Bullwhip and reverse bullwhip effects under the rationing game," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 203-216, April.
    15. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    16. Wang, Jiepeng & Zhou, Hong & Jin, Xiaodan, 2021. "Risk transmission in complex supply chain network with multi-drivers," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    17. Dixit, Vijaya & Verma, Priyanka & Tiwari, Manoj Kumar, 2020. "Assessment of pre and post-disaster supply chain resilience based on network structural parameters with CVaR as a risk measure," International Journal of Production Economics, Elsevier, vol. 227(C).
    18. Ledwoch, Anna & Yasarcan, Hakan & Brintrup, Alexandra, 2018. "The moderating impact of supply network topology on the effectiveness of risk management," International Journal of Production Economics, Elsevier, vol. 197(C), pages 13-26.
    19. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    20. Hazhir Rahmandad & Nelson Repenning, 2016. "Capability erosion dynamics," Strategic Management Journal, Wiley Blackwell, vol. 37(4), pages 649-672, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.