The effects of varying game payoffs and lattice dimensionality on Prisoner’s Dilemma games
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2023.113144
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xuelong Li & Marko Jusup & Zhen Wang & Huijia Li & Lei Shi & Boris Podobnik & H. Eugene Stanley & Shlomo Havlin & Stefano Boccaletti, 2018. "Punishment diminishes the benefits of network reciprocity in social dilemma experiments," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(1), pages 30-35, January.
- Song, Qun & Cao, Zhaoheng & Tao, Rui & Jiang, Wei & Liu, Chen & Liu, Jinzhuo, 2020. "Conditional neutral punishment promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
- Zhu, Cheng-jie & Sun, Shi-wen & Wang, Juan & Xia, Cheng-yi, 2013. "Role of population density and increasing neighborhood in the evolution of cooperation on diluted lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6353-6360.
- Miyaji, Kohei & Tanimoto, Jun, 2021. "The existence of fence-sitters relaxes the spatial prisoner’s dilemma and enhances network reciprocity," Applied Mathematics and Computation, Elsevier, vol. 390(C).
- Premo, L.S. & Brown, Justin R., 2019. "The opportunity cost of walking away in the spatial iterated prisoner’s dilemma," Theoretical Population Biology, Elsevier, vol. 127(C), pages 40-48.
- Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
- Zhang, Liming & Huang, Changwei & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2021. "Cooperation guided by imitation, aspiration and conformity-driven dynamics in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pi, Bin & Li, Yuhan & Feng, Minyu, 2022. "An evolutionary game with conformists and profiteers regarding the memory mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
- Gao, Liyan & Pan, Qiuhui & He, Mingfeng, 2022. "Advanced defensive cooperators promote cooperation in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Adaptive persistence based on environment comparison enhances cooperation in evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 421(C).
- Quan, Ji & Yu, Junyu & Li, Xia & Wang, Xianjia, 2023. "Conditional switching between social excluders and loners promotes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Zu, Jinjing & Xu, Fanxin & Jin, Tao & Xiang, Wei, 2022. "Reward and Punishment Mechanism with weighting enhances cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
- Song, Fanpeng & Wu, Jianliang & Fan, Suohai & Jing, Fei, 2020. "Transcendental behavior and disturbance behavior favor human development," Applied Mathematics and Computation, Elsevier, vol. 378(C).
- Li, Shulan & Hong, Lijun & Geng, Yini & Shen, Chen, 2020. "Popularity-driven fitness calculation promotes cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
- Wang, Zi-Ren & Deng, Zheng-Hong & Wang, Huan-Bo & Qu, Yun, 2021. "Moderate irrational sentiment-driven fitness can promote cooperation in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
- Lu, Wen & Liang, Shu, 2023. "Direct emotional interaction in prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 458(C).
- Yang, Xuenan & Peng, Yu & Xiao, Yue & Wu, Xue, 2019. "Nonlinear dynamics of a duopoly Stackelberg game with marginal costs," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 185-191.
- Wang, Zi-Ren & Deng, Zheng-Hong & Wang, Huan-Bo & Li, HuXiong & X, Fei-Wang, 2022. "Uneven Resources network promotes cooperation in the prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 413(C).
- Zha, Jiajing & Li, Cong & Fan, Suohai, 2022. "The effect of stability-based strategy updating on cooperation in evolutionary social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 413(C).
- Liu, Chen & Guo, Hao & Li, Zhibin & Gao, Xiaoyuan & Li, Shudong, 2019. "Coevolution of multi-game resolves social dilemma in network population," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 402-407.
- Wang, Qiuling & Du, Chunpeng, 2019. "Impact of expansion of priority range on cooperation in the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 77-80.
- Han, Jia-Xu & Wang, Rui-Wu, 2023. "Complex interactions promote the frequency of cooperation in snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Zhu, Jiabao & Liu, Xingwen, 2021. "The number of strategy changes can be used to promote cooperation in spatial snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
- Chen, Qin & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of quasi-cooperative strategy on social dilemma evolution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
- Kurokawa, Shun, 2019. "How memory cost, switching cost, and payoff non-linearity affect the evolution of persistence," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 174-192.
- Iwamura, Yoshiro & Nagashima, Keisuke & Tanimoto, Jun, 2020. "Evolutionary dynamics of a 3-strategy game: Cooperator, defector and costly cooperative loner strategic types," Applied Mathematics and Computation, Elsevier, vol. 370(C).
- Huang, Chaochao & Wang, Chaoqian, 2024. "Memory-based involution dilemma on square lattices," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
More about this item
Keywords
Game theory; Prisoner’s Dilemma; Cooperation; Lattice graph;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000450. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.