IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008116.html
   My bibliography  Save this article

How many asymptomatic cases were unconfirmed in the US COVID-19 pandemic? The evidence from a serological survey

Author

Listed:
  • Cai, Junyang
  • Zhou, Jian

Abstract

A serological survey from CDC revealed more than 10% of individuals in America probably resolving or past infection with SARS-CoV-2 at the end of 2020, which illustrated there were massive unconfirmed asymptomatic infected people by contrast with the reported cases numbers. Asymptomatic patients as one of the crucial reasons for the COVID-19 pandemic being tough to contain, estimating the number of unconfirmed ones including the active infected and having cured in this population, is of great guiding significance for formulating epidemic prevention and control policies. This paper proposes a varying coefficient Susceptible–Infected–Removed–Susceptible (vSIRS) model to obtain the time series data of the unconfirmed asymptomatic infected numbers. Moreover, due to the time-varying coefficients, we can effectively track the situation changes of the COVID-19 intervened by related policy support and medical care level through this epidemiological model. A novel two-stage approach with a programming problem is correspondingly developed to accomplish the estimation of the unknown parameters in the vSIRS model. Subsequently, by leveraging seroprevalence data, daily reported cases data, and other clinical information, we apply the vSIRS model to analyze the evolution of COVID-19 in America. The modeling results show millions of active asymptomatic infected individuals were unconfirmed during the autumn and winter of 2020, which was a momentous factor for driving American COVID-19 pandemic.

Suggested Citation

  • Cai, Junyang & Zhou, Jian, 2022. "How many asymptomatic cases were unconfirmed in the US COVID-19 pandemic? The evidence from a serological survey," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008116
    DOI: 10.1016/j.chaos.2022.112630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manski, Charles F. & Molinari, Francesca, 2021. "Estimating the COVID-19 infection rate: Anatomy of an inference problem," Journal of Econometrics, Elsevier, vol. 220(1), pages 181-192.
    2. Opeyemi Lateef Usman & Ravie Chandren Muniyandi & Khairuddin Omar & Mazlyfarina Mohamad, 2021. "Gaussian smoothing and modified histogram normalization methods to improve neural-biomarker interpretations for dyslexia classification mechanism," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-27, February.
    3. Li, Tingting & Guo, Youming, 2022. "Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    5. Martínez-Guerra, Rafael & Flores-Flores, Juan Pablo, 2021. "An algorithm for the robust estimation of the COVID-19 pandemic’s population by considering undetected individuals," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    6. Aguilar-Canto, Fernando Javier & de León, Ugo Avila-Ponce & Avila-Vales, Eric, 2022. "Sensitivity theorems of a model of multiple imperfect vaccines for COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Linton, Oliver & Mammen, Enno & Nielsen, Jans Perch & Tanggaard, Carsten, 2001. "Yield curve estimation by kernel smoothing methods," Journal of Econometrics, Elsevier, vol. 105(1), pages 185-223, November.
    8. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Angeli, Mattia & Neofotistos, Georgios & Mattheakis, Marios & Kaxiras, Efthimios, 2022. "Modeling the effect of the vaccination campaign on the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    10. AlHajri, M.F. & El-Naggar, K.M. & AlRashidi, M.R. & Al-Othman, A.K., 2012. "Optimal extraction of solar cell parameters using pattern search," Renewable Energy, Elsevier, vol. 44(C), pages 238-245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    2. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," CESifo Working Paper Series 8977, CESifo.
    3. Jonas E. Arias & Jesús Fernández-Villaverde & Juan Rubio Ramírez & Minchul Shin, 2021. "The Causal Effects of Lockdown Policies on Health and Macroeconomic Outcomes," NBER Working Papers 28617, National Bureau of Economic Research, Inc.
    4. Shi, Lei & Chen, Ziang & Wu, Peng, 2023. "Spatial and temporal dynamics of COVID-19 with nonlocal dispersal in heterogeneous environment: Modeling, analysis and simulation," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Difang Huang & Ying Liang & Boyao Wu & Yanyi Ye, 2024. "Estimating the Impact of Social Distance Policy in Mitigating COVID-19 Spread with Factor-Based Imputation Approach," Papers 2405.12180, arXiv.org.
    6. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    7. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    8. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    9. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    10. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Epidemics and macroeconomic outcomes: Social distancing intensity and duration," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    11. Badi H. Baltagi & Ying Deng & Jing Li & Zhenlin Yang, 2023. "Cities in a pandemic: Evidence from China," Journal of Regional Science, Wiley Blackwell, vol. 63(2), pages 379-408, March.
    12. Valentina Aprigliano & Alessandro Borin & Francesco Paolo Conteduca & Simone Emiliozzi & Marco Flaccadoro & Sabina Marchetti & Stefania Villa, 2021. "Forecasting Italian GDP growth with epidemiological data," Questioni di Economia e Finanza (Occasional Papers) 664, Bank of Italy, Economic Research and International Relations Area.
    13. Nicholas W. Papageorge & Matthew V. Zahn & Michèle Belot & Eline Broek-Altenburg & Syngjoo Choi & Julian C. Jamison & Egon Tripodi, 2021. "Socio-demographic factors associated with self-protecting behavior during the Covid-19 pandemic," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(2), pages 691-738, April.
    14. Daniel L. Millimet & Christopher F. Parmeter, 2022. "COVID‐19 severity: A new approach to quantifying global cases and deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1178-1215, July.
    15. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    16. Walter Distaso & Rustam Ibragimov & Alexander Semenov & Anton Skrobotov, 2020. "COVID-19: Tail Risk and Predictive Regressions," Papers 2009.02486, arXiv.org, revised Oct 2021.
    17. Muhammad Ali Mughal & Qishuang Ma & Chunyan Xiao, 2017. "Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing," Energies, MDPI, vol. 10(8), pages 1-14, August.
    18. Andrew Jeffrey & Oliver Linton & Thong Nguyen, 2006. "Flexible Term Structure Estimation: Which Method is Preferred?," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 63(1), pages 99-122, February.
    19. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    20. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.