IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008086.html
   My bibliography  Save this article

Identifying influential nodes in complex networks based on spreading probability

Author

Listed:
  • Ai, Jun
  • He, Tao
  • Su, Zhan
  • Shang, Lihui

Abstract

The identification of node importance is a challenging topic in network science, and plays a critical role in understanding the structure and function of networks. Various centrality methods have been proposed to define the influence of nodes. However, most existing works do not directly use the node propagation capacity for measuring the importance of nodes. Moreover, those methods do not have a high enough ability to distinguish nodes with minor differences, and are not applicable to a wide range of network types. To address the issues, we first define a method to calculate the propagation capability of nodes and divide the nodes in the network into an infected source and the uninfected nodes. The propagation capability of a source node is calculated from the probability that uninfected nodes are infected by the source, either directly or indirectly. Based on measuring the propagation ability of each node in the network, we propose a novel centrality method based on node spreading probability (SPC). Empirical analysis is performed by Susceptible–Infected–Recovered (SIR) model and static attacking simulation. We use six classical networks, and five typical methods to validate SPC. The results demonstrate that our method balances the measurement of node importance in the network connectivity and propagation structure with superior ability to discriminate nodes.

Suggested Citation

  • Ai, Jun & He, Tao & Su, Zhan & Shang, Lihui, 2022. "Identifying influential nodes in complex networks based on spreading probability," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008086
    DOI: 10.1016/j.chaos.2022.112627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Franz Kaiser & Vito Latora & Dirk Witthaut, 2021. "Network isolators inhibit failure spreading in complex networks," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    3. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    4. Stuart Oldham & Ben Fulcher & Linden Parkes & Aurina Arnatkevic̆iūtė & Chao Suo & Alex Fornito, 2019. "Consistency and differences between centrality measures across distinct classes of networks," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    5. Qu, Junyi & Tang, Ming & Liu, Ying & Guan, Shuguang, 2020. "Identifying influential spreaders in reversible process," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yan & Zhang, Ling & Yang, Junwen & Yan, Ming & Li, Haozhan, 2024. "Multi-factor information matrix: A directed weighted method to identify influential nodes in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Guo, Haoming & Wang, Shuangling & Yan, Xuefeng & Zhang, Kecheng, 2024. "Node importance evaluation method of complex network based on the fusion gravity model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    3. Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    5. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    6. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    7. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    8. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    9. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    10. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    11. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    14. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    15. Wang, Junyi & Hou, Xiaoni & Li, Kezan & Ding, Yong, 2017. "A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 88-105.
    16. Gündüç, Semra & Eryiğit, Recep, 2021. "Time dependent correlations between the probability of a node being infected and its centrality measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    17. Yeruva, Sujatha & Devi, T. & Reddy, Y. Samtha, 2016. "Selection of influential spreaders in complex networks using Pareto Shell decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 133-144.
    18. Ma, Tinghuai & Yue, Mingliang & Qu, Jingjing & Tian, Yuan & Al-Dhelaan, Abdullah & Al-Rodhaan, Mznah, 2018. "PSPLPA: Probability and similarity based parallel label propagation algorithm on spark," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 366-378.
    19. Qu, Junyi & Liu, Ying & Tang, Ming & Guan, Shuguang, 2022. "Identification of the most influential stocks in financial networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Wang, Ying & Zheng, Yunan & Shi, Xuelei & Liu, Yiguang, 2022. "An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.