IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922006610.html
   My bibliography  Save this article

Discrete fractional cobweb models

Author

Listed:
  • Bohner, Martin
  • Jonnalagadda, Jagan Mohan

Abstract

In this article, we propose two types of discrete fractional cobweb models. We derive the analytical solutions of these models and establish sufficient conditions on the stability of their equilibria. We also provide two examples to demonstrate the applicability of our main results.

Suggested Citation

  • Bohner, Martin & Jonnalagadda, Jagan Mohan, 2022. "Discrete fractional cobweb models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006610
    DOI: 10.1016/j.chaos.2022.112451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922006610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salahshour, Soheil & Ahmadian, Ali & Allahviranloo, Tofigh, 2021. "A new fractional dynamic cobweb model based on nonsingular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Syed Ali & Gani Stamov & Ivanka Stamova & Tarek F. Ibrahim & Arafa A. Dawood & Fathea M. Osman Birkea, 2023. "Global Asymptotic Stability and Synchronization of Fractional-Order Reaction–Diffusion Fuzzy BAM Neural Networks with Distributed Delays via Hybrid Feedback Controllers," Mathematics, MDPI, vol. 11(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arfaoui, Hassen & Ben Makhlouf, Abdellatif, 2022. "Stability of a time fractional advection-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Arfaoui, Hassen & Ben Makhlouf, Abdellatif, 2022. "Stability of a fractional advection–diffusion system with conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.