IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics0960077922004635.html
   My bibliography  Save this article

Exotical solitons for an intrinsic fractional circuit using the sine-cosine method

Author

Listed:
  • Fendzi-Donfack, Emmanuel
  • Kamkou Temgoua, Gildas William
  • Djoufack, Zacharie Isidore
  • Kenfack-Jiotsa, Aurélien
  • Nguenang, Jean Pierre
  • Nana, Laurent

Abstract

This work focuses on seeking soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission network obtained through the simplest sine-cosine method. The studied model is governed by a fractional nonlinear partial differential-difference equation in (2 + 1) spatio-temporal dimensions, and the method used to get exact solutions is simple, concise and well-known. We achieve for the model studied here that, the sought solutions specifically by means of the sine-cosine method are functions of all the capacitor's nonlinearities (quadratic and cubic) if and only if, we use the fourth-order spatial dispersion (FOSD)during the continuous media approximation. In contrast, in the absence of the FOSD term, the solutions only exist if, either the quadratic or the cubic nonlinearity is considered separately. In addition, the obtained solutions shapes are exotical, unexpected and novel. These findings (singular bright solitary waves, pulse, U-shaped and M-shaped waves trains) get many applications; for instance, codifying data in the allowed or forbidden band for the signal's transmission in the waveguides.

Suggested Citation

  • Fendzi-Donfack, Emmanuel & Kamkou Temgoua, Gildas William & Djoufack, Zacharie Isidore & Kenfack-Jiotsa, Aurélien & Nguenang, Jean Pierre & Nana, Laurent, 2022. "Exotical solitons for an intrinsic fractional circuit using the sine-cosine method," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004635
    DOI: 10.1016/j.chaos.2022.112253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doungmo Goufo, Emile Franc, 2019. "On chaotic models with hidden attractors in fractional calculus above power law," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 24-30.
    2. Wang, Li & Xie, Yuxin & Wang, Xiaoyi & Xu, Jiping & Zhang, Huiyan & Yu, Jiabin & Sun, Qian & Zhao, Zhiyao, 2019. "Meteorological sequence prediction based on multivariate space-time auto regression model and fractional calculus grey model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 203-209.
    3. Zuñiga Aguilar, C.J. & Gómez-Aguilar, J.F. & Alvarado-Martínez, V.M. & Romero-Ugalde, H.M., 2020. "Fractional order neural networks for system identification," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Emmanuel Kengne & Ahmed Lakhssassi, 2014. "Propagation of nonlinear waves in bi-inductance nonlinear transmission lines," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(10), pages 1-10, October.
    5. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    6. Yusuf, Abdullahi & Acay, Bahar & Mustapha, Umar Tasiu & Inc, Mustafa & Baleanu, Dumitru, 2021. "Mathematical modeling of pine wilt disease with Caputo fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Valliammal, N. & Ravichandran, C. & Nisar, Kottakkaran Sooppy, 2020. "Solutions to fractional neutral delay differential nonlocal systems," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    8. Ibrahim, Rabha W. & Altulea, Dania, 2020. "Controlled homeodynamic concept using a conformable calculus in artificial biological systems," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    10. Fendzi Donfack, Emmanuel & Nguenang, Jean Pierre & Nana, Laurent, 2020. "On the traveling waves in nonlinear electrical transmission lines with intrinsic fractional-order using discrete tanh method," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fendzi-Donfack, Emmanuel & Kenfack-Jiotsa, Aurélien, 2023. "Extended Fan’s sub-ODE technique and its application to a fractional nonlinear coupled network including multicomponents — LC blocks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor & Chaudhary, Iqra Ishtiaq & Pinto, Carla M.A., 2022. "Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Zhang, Yonghong & Mao, Shuhua & Kang, Yuxiao & Wen, Jianghui, 2021. "Fractal derivative fractional grey Riccati model and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Ren, Jinfu & Liu, Yang & Liu, Jiming, 2023. "Chaotic behavior learning via information tracking," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    9. Fendzi Donfack, Emmanuel & Nguenang, Jean Pierre & Nana, Laurent, 2020. "On the traveling waves in nonlinear electrical transmission lines with intrinsic fractional-order using discrete tanh method," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    10. Li, Xing-Yu & Wu, Kai-Ning & Liu, Xiao-Zhen, 2023. "Mittag–Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    11. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    12. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    14. Ali, Zeeshan & Rabiei, Faranak & Hosseini, Kamyar, 2023. "A fractal–fractional-order modified Predator–Prey mathematical model with immigrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 466-481.
    15. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Yu, Qiang & Turner, Ian & Liu, Fawang & Vegh, Viktor, 2022. "The application of the distributed-order time fractional Bloch model to magnetic resonance imaging," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    18. Zhang, Zhe & Wang, Yaonan & Zhang, Jing & Ai, Zhaoyang & Liu, Feng, 2022. "Novel stability results of multivariable fractional-order system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Runzi Luo & Haipeng Su, 2018. "The Robust Control and Synchronization of a Class of Fractional-Order Chaotic Systems with External Disturbances via a Single Output," Complexity, Hindawi, vol. 2018, pages 1-8, November.
    20. Omaba, McSylvester Ejighikeme, 2021. "Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.