IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip2s0960077921008274.html
   My bibliography  Save this article

K-Narayana sequence self-Similarity. flip graph views of k-Narayana self-Similarity

Author

Listed:
  • Özkan, Engin
  • Kuloǧlu, Bahar
  • Peters, James F.

Abstract

This paper introduces self-similarity inherent in planar Milich-Jennings centered flip graphs derived from the Narayana sequence. We show that self-similarity found in a Narayana sequence yields a connected spanning subgraph with a centered flip. This paper has several main results (1) Every Narayana sequence constructs a flip graph, (2) Every Narayana sequence is self-similar and (3) Every Pascal 3-triangle has a free group presentation.

Suggested Citation

  • Özkan, Engin & Kuloǧlu, Bahar & Peters, James F., 2021. "K-Narayana sequence self-Similarity. flip graph views of k-Narayana self-Similarity," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008274
    DOI: 10.1016/j.chaos.2021.111473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stakhov, Alexey, 2007. "The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 315-334.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Falcón, Sergio & Plaza, Ángel, 2009. "The metallic ratios as limits of complex valued transformations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 1-13.
    2. Cristina E. Hretcanu & Mircea Crasmareanu, 2023. "The ( α , p )-Golden Metric Manifolds and Their Submanifolds," Mathematics, MDPI, vol. 11(14), pages 1-13, July.
    3. Mohammad Nazrul Islam Khan & Uday Chand De & Teg Alam, 2023. "Characterizations of the Frame Bundle Admitting Metallic Structures on Almost Quadratic ϕ -Manifolds," Mathematics, MDPI, vol. 11(14), pages 1-12, July.
    4. Khan, Mohammad Nazrul Islam, 2021. "Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Falcon, Sergio & Plaza, Ángel, 2009. "k-Fibonacci sequences modulo m," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 497-504.
    6. Basu, Manjusri & Prasad, Bandhu, 2009. "Coding theory on the m-extension of the Fibonacci p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2522-2530.
    7. Chi Hongmei, 2013. "Generation of parallel modified Kronecker sequences," Monte Carlo Methods and Applications, De Gruyter, vol. 19(4), pages 261-271, December.
    8. Cristina E. Hretcanu & Adara M. Blaga, 2021. "Types of Submanifolds in Metallic Riemannian Manifolds: A Short Survey," Mathematics, MDPI, vol. 9(19), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.