IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921008225.html
   My bibliography  Save this article

Analysis and pattern formation scenarios in the superdiffusive system of predation described with Caputo operator

Author

Listed:
  • Owolabi, Kolade M.
  • Pindza, Edson
  • Atangana, Abdon

Abstract

The concept of a fractional derivative is introduced to the predator-prey system to describe the species anomalous superdiffusive process. To achieve this, a new class of predator-prey model with the Beddington-DeAngelis functional response is formulated in the sense of the Caputo fractional order operator. This work aims to give a mathematical basis for computational studies of a two-variable fractional reaction-diffusion system in one and two dimensions from biological and numerical perspectives. As a result, some details of the local and global dynamics of the reaction-diffusion system are provided by using the idea of the linear stability analysis and well-known dynamical systems theory to derive conditions on the parameters which can guarantee biologically meaningful equilibria also serve as a guide in ensuring the correct choice of parameters when numerically experimenting with the solutions of the full fractional reaction-diffusion model. The behavior of the new dynamical system is examined for both diffusive and non-diffusive systems at different instances of fractional order.

Suggested Citation

  • Owolabi, Kolade M. & Pindza, Edson & Atangana, Abdon, 2021. "Analysis and pattern formation scenarios in the superdiffusive system of predation described with Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921008225
    DOI: 10.1016/j.chaos.2021.111468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    2. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izadi, Mohammad & Yüzbaşı, Şuayip & Adel, Waleed, 2022. "Accurate and efficient matrix techniques for solving the fractional Lotka–Volterra population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Alqhtani, Manal & Owolabi, Kolade M. & Saad, Khaled M., 2022. "Spatiotemporal (target) patterns in sub-diffusive predator-prey system with the Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Shoaib, Muhammad & Kiani, Adiqa Kausar, 2022. "Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Troparevsky, M.I. & Muszkats, J.P. & Seminara, S.A. & Zitto, M.E. & Piotrkowski, R., 2022. "Modeling particulate pollutants dispersed in the atmosphere using fractional turbulent diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    5. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Rafiq, Naila & Shoaib, Muhammad & Kiani, Adiqa Kausar & Shu, Chi-Min, 2022. "Design of intelligent computing networks for nonlinear chaotic fractional Rossler system," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Alqhtani, Manal & Owolabi, Kolade M. & Saad, Khaled M. & Pindza, Edson, 2022. "Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Dongyang & Zhang, Sihui, 2024. "Unconditional superconvergence analysis of an energy-stable L1 scheme for coupled nonlinear time-fractional prey-predator equations with nonconforming finite element," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    2. Caicedo, Alejandro & Cuevas, Claudio & Mateus, Éder & Viana, Arlúcio, 2021. "Global solutions for a strongly coupled fractional reaction-diffusion system in Marcinkiewicz spaces," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Owolabi, Kolade M., 2020. "High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Sekerci, Yadigar, 2020. "Climate change effects on fractional order prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    7. Qureshi, Sania & Aziz, Shaheen, 2020. "Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    8. Amouch, Mohamed & Karim, Noureddine, 2021. "Modeling the dynamic of COVID-19 with different types of transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    9. Yusuf, Abdullahi & Qureshi, Sania & Feroz Shah, Syed, 2020. "Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    10. Rubayyi T. Alqahtani & Abdullahi Yusuf & Ravi P. Agarwal, 2021. "Mathematical Analysis of Oxygen Uptake Rate in Continuous Process under Caputo Derivative," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    11. Lu, D. & Osman, M.S. & Khater, M.M.A. & Attia, R.A.M. & Baleanu, D., 2020. "Analytical and numerical simulations for the kinetics of phase separation in iron (Fe–Cr–X (X=Mo,Cu)) based on ternary alloys," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Belmahi, Naziha & Shawagfeh, Nabil, 2021. "A new mathematical model for the glycolysis phenomenon involving Caputo fractional derivative: Well posedness, stability and bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Mustapha, Umar Tasiu & Qureshi, Sania & Yusuf, Abdullahi & Hincal, Evren, 2020. "Fractional modeling for the spread of Hookworm infection under Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    14. Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921008225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.