IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921004732.html
   My bibliography  Save this article

A novel method for prediction of EuroLeague game results using hybrid feature extraction and machine learning techniques

Author

Listed:
  • Ballı, Serkan
  • Özdemir, Engin

Abstract

Basketball competitions are among the most watched sports activities in the world. With the developing technology, statistics of the games and players of basketball can be stored more easily, so artificial intelligence techniques such as machine learning can be used for decision making and prediction. While there are studies on American leagues and especially the NBA on the predictions of the results of basketball competitions, the number of studies on European leagues in this regard is insufficient. In this study, for the first time in the literature, EuroLeague matches have been evaluated with the hybrid of Four Factors and DefenseOfense models together and then machine learning methods have been applied for the prediction of game results. Accordingly, the matches played between the seasons of 2012–2013 and 2016–2017 have been used as 5 different data sets. New features have been extracted using with Four Factors and DefenseOfense models together and 8 different feature models have been obtained. Then, machine learning methods such as kNN, Logistic Regression, Multilayer Perceptron, Naive Bayes, j48 and Voting have been used and the results have been discussed. Finally, 98.90% prediction success has been achieved with the Multilayer Perceptron method by using Dataset 5 and Model 6.

Suggested Citation

  • Ballı, Serkan & Özdemir, Engin, 2021. "A novel method for prediction of EuroLeague game results using hybrid feature extraction and machine learning techniques," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004732
    DOI: 10.1016/j.chaos.2021.111119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921004732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Yao & Xia, Zeyu & Wu, Tian & Yi, Qing & Yu, Runyu & Wang, Jun, 2020. "Characteristics and optimization of core local network: Big data analysis of football matches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Marcelino, Rui & Sampaio, Jaime & Amichay, Guy & Gonçalves, Bruno & Couzin, Iain D. & Nagy, Máté, 2020. "Collective movement analysis reveals coordination tactics of team players in football matches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Medina, Pablo & Carrasco, Sebastián & Rogan, José & Montes, Felipe & Meisel, Jose D. & Lemoine, Pablo & Lago Peñas, Carlos & Valdivia, Juan Alejandro, 2021. "Is a social network approach relevant to football results?," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Clemente, Filipe Manuel & Sarmento, Hugo & Aquino, Rodrigo, 2020. "Player position relationships with centrality in the passing network of world cup soccer teams: Win/loss match comparisons," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. Gomez, Miguel-Angel & Reus, Marc & Parmar, Nimai & Travassos, Bruno, 2020. "Exploring elite soccer teams’ performances during different match-status periods of close matches’ comebacks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beheshtian-Ardakani, Arash & Salehi, Mostafa & Sharma, Rajesh, 2023. "CMPN: Modeling and analysis of soccer teams using Complex Multiplex Passing Network," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Novillo, Álvaro & Gong, Bingnan & Martínez, Johann H. & Resta, Ricardo & del Campo, Roberto López & Buldú, Javier M., 2024. "A multilayer network framework for soccer analysis," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Marcelino, Rui & Sampaio, Jaime & Amichay, Guy & Gonçalves, Bruno & Couzin, Iain D. & Nagy, Máté, 2020. "Collective movement analysis reveals coordination tactics of team players in football matches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Seiler, A. & Papanagnou, C. & Scarf, P., 2020. "On the relationship between financial performance and position of businesses in supply chain networks," International Journal of Production Economics, Elsevier, vol. 227(C).
    5. Katalin Ozogány & Viola Kerekes & Attila Fülöp & Zoltán Barta & Máté Nagy, 2023. "Fine-scale collective movements reveal present, past and future dynamics of a multilevel society in Przewalski’s horses," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Widarti Widarti & Desfitrina Desfitrina & Zulfadhli Zulfadhli, 2020. "Business Process Life Cycle Affects Company Financial Performance: Micro, Small, and Medium Business Enterprises During The Covid-19 Period," International Journal of Economics and Financial Issues, Econjournals, vol. 10(5), pages 211-219.
    7. Sergio Caicedo-Parada & Carlos Lago-Peñas & Enrique Ortega-Toro, 2020. "Passing Networks and Tactical Action in Football: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    8. Riccardo Ievoli & Aldo Gardini & Lucio Palazzo, 2023. "The role of passing network indicators in modeling football outcomes: an application using Bayesian hierarchical models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 153-175, March.
    9. Leonardo Lamas & José Vitor Senatore & Gilbert Fellingham, 2020. "Two steps for scoring a point: Creating and converting opportunities in invasion team sports," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-16, October.
    10. Gómez, Miguel A. & Cid, Adrián & Rivas, Fernando & Barreira, Júlia & Chiminazzo, João Guilherme Cren & Prieto, Jaime, 2021. "Dynamic analysis of scoring performance in elite men's badminton according to contextual-related variables," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    11. Ichinose, Genki & Tsuchiya, Tomohiro & Watanabe, Shunsuke, 2021. "Robustness of football passing networks against continuous node and link removals," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    12. Wu, Yao & Xia, Zeyu & Wu, Tian & Yi, Qing & Yu, Runyu & Wang, Jun, 2020. "Characteristics and optimization of core local network: Big data analysis of football matches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Song, Honglin & Li, Yutao & Fu, Chenyi & Xue, Feng & Zhao, Qiyue & Zheng, Xingyu & Jiang, Kunkun & Liu, Tianbiao, 2024. "Using complex networks and multiple artificial intelligence algorithms for table tennis match action recognition and technical-tactical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    14. Külah, Emre & Alemdar, Hande, 2020. "Quantifying the value of sprints in elite football using spatial cohesive networks," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.