IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920306834.html
   My bibliography  Save this article

Network structure reconstruction with symmetry constraint

Author

Listed:
  • Hang, Zihua
  • Dai, Penglin
  • Jia, Shanshan
  • Yu, Zhaofei

Abstract

Complex networks have been an effective paradigm to represent a variety of complex systems, such as social networks, collaborative networks, and biomolecular networks, where network topology is unkown in advance and has to be inferred with limited observed measurements. Compressive sensing (CS) theory is an efficient technique to achieve accurate network reconstruction in complex networks by formulating the problem as a series of convex optimization models and utilizing the sparsity of networks. However, previous CS-based works have to solve a large number of convex optimization models, which is time-consuming especially when the network scale becomes large. Further, since partial link information shared among multiple convex models, data conflict problem may incur when the derived common variables are inconsistent, which may badly degrade infer precision. To address the issues above, we propose a new model for network reconstruction based on compressive sensing. To be specific, a single convex optimization model is formulated for inferring global network structure by combing the series of convex optimization models, which can effectively improve computation efficiency. Further, we devise a vector to represent the connection states of all the nodes without redundant link information, which is used for representing the unkown topology variables in the proposed optimization model based a devised transformation method. In this way, the proposed model can eliminate data conflict problem and improve infer precision. The comprehensive simulation results shows the superiority of the proposed model compared with the competitive algorithms under a wide variety of scenarios.

Suggested Citation

  • Hang, Zihua & Dai, Penglin & Jia, Shanshan & Yu, Zhaofei, 2020. "Network structure reconstruction with symmetry constraint," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306834
    DOI: 10.1016/j.chaos.2020.110287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhesi Shen & Wen-Xu Wang & Ying Fan & Zengru Di & Ying-Cheng Lai, 2014. "Reconstructing propagation networks with natural diversity and identifying hidden sources," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    2. Jeong, Wonhee & Yu, Unjong, 2019. "Prisoner’s dilemma game on complex networks with a death process: Effects of minimum requirements and immigration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 47-52.
    3. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    4. Zhu, Liang & Wang, Youguo, 2017. "Rumor spreading model with noise interference in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 750-760.
    5. Pandey, Pradumn Kumar & Badarla, Venkataramana, 2018. "Reconstruction of network topology using status-time-series data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 573-583.
    6. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Hai-Chuan & Wang, Zhi-Yuan & Jawadi, Fredj & Zhou, Wei-Xing, 2023. "Reconstruction of international energy trade networks with given marginal data: A comparative analysis," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Federico Malizia & Alessandra Corso & Lucia Valentina Gambuzza & Giovanni Russo & Vito Latora & Mattia Frasca, 2024. "Reconstructing higher-order interactions in coupled dynamical systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Pandey, Pradumn Kumar & Badarla, Venkataramana, 2018. "Reconstruction of network topology using status-time-series data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 573-583.
    3. Huang, Keke & Deng, Wenfeng & Zhang, Yichi & Zhu, Hongqiu, 2020. "Sparse Bayesian learning for network structure reconstruction based on evolutionary game data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Junfang Wang & Jin-Li Guo, 2022. "The reconstruction on the game networks with binary-state and multi-state dynamics," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-18, February.
    5. Xu, Hai-Chuan & Wang, Zhi-Yuan & Jawadi, Fredj & Zhou, Wei-Xing, 2023. "Reconstruction of international energy trade networks with given marginal data: A comparative analysis," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    7. Marco Tomassini & Alberto Antonioni, 2019. "Computational Behavioral Models for Public Goods Games on Social Networks," Games, MDPI, vol. 10(3), pages 1-14, September.
    8. Wu, Qingchu, 2024. "A hybrid one-vertex model for susceptible–infected–susceptible diseases on networks with partial connection information," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Stojkoski, Viktor & Karbevski, Marko & Utkovski, Zoran & Basnarkov, Lasko & Kocarev, Ljupco, 2021. "Evolution of cooperation in networked heterogeneous fluctuating environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    10. Deng, Zhenghong & Wang, Shengnan & Gu, Zhiyang & Xu, Juwei & Song, Qun, 2017. "Heterogeneous preference selection promotes cooperation in spatial prisoners’ dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 20-23.
    11. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    12. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    13. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    14. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    15. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    16. Flores, Lucas S. & Han, The Anh, 2024. "Evolution of commitment in the spatial public goods game through institutional incentives," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    17. Li, Yixiao & Jin, Xiaogang & Su, Xianchuang & Kong, Fansheng & Peng, Chengbin, 2010. "Cooperation and charity in spatial public goods game under different strategy update rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1090-1098.
    18. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Manh Hong Duong & Hoang Minh Tran & The Anh Han, 2019. "On the Expected Number of Internal Equilibria in Random Evolutionary Games with Correlated Payoff Matrix," Dynamic Games and Applications, Springer, vol. 9(2), pages 458-485, June.
    20. Haozheng Xu & Yiwen Zhang & Xing Jin & Jingrui Wang & Zhen Wang, 2023. "The Evolution of Cooperation in Multigames with Uniform Random Hypergraphs," Mathematics, MDPI, vol. 11(11), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.