IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v128y2019icp275-279.html
   My bibliography  Save this article

A numerical method for solving fractional-order viscoelastic Euler–Bernoulli beams

Author

Listed:
  • Yu, Chunxiao
  • Zhang, Jie
  • Chen, Yiming
  • Feng, Yujing
  • Yang, Aimin

Abstract

This paper presents a new numerical method to solve the constitutive equations of fractional-order viscoelastic Euler–Bernoulli beams. Firstly, the constitutive equation of Euler–Bernoulli beams is established by analyzing the constitutive relation between the fractional viscoelastic materials. Secondly, the constitutive equation of the beams is transformed into a matrix equation by skillfully using a Quasi-Legendre polynomial in the time domain, which can greatly simplify the solution process. Then the matrix equation is discretized and solved, and the numerical solutions are obtained. Finally, dynamic analysis of two different fractional viscoelastic materials is carried out by numerical experiments, and the influences of time on displacements are considered for the first time. With the change of time and position, displacements under different external loads are obtained for the polybutadiene beams and butyl B252 beams, and the change law of displacements is found. In addition, the performances of the two materials are compared and analyzed.

Suggested Citation

  • Yu, Chunxiao & Zhang, Jie & Chen, Yiming & Feng, Yujing & Yang, Aimin, 2019. "A numerical method for solving fractional-order viscoelastic Euler–Bernoulli beams," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 275-279.
  • Handle: RePEc:eee:chsofr:v:128:y:2019:i:c:p:275-279
    DOI: 10.1016/j.chaos.2019.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919302863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lei & Chen, Yiming & Cheng, Gang & Barrière, Thierry, 2020. "Numerical analysis of fractional partial differential equations applied to polymeric visco-elastic Euler-Bernoulli beam under quasi-static loads," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Li, Qing & Chen, Huanzhen, 2022. "Numerical analysis for compact difference scheme of fractional viscoelastic beam vibration models," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    3. Li, Yiqun & Wang, Hong, 2023. "A finite element approximation to a viscoelastic Euler–Bernoulli beam with internal damping," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 138-158.
    4. Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Defoort, Michael & Boulaaras, Salah, 2021. "Predefined-time convergence in fractional-order systems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Cui, Yuhuan & Qu, Jingguo & Han, Cundi & Cheng, Gang & Zhang, Wei & Chen, Yiming, 2022. "Shifted Bernstein–Legendre polynomial collocation algorithm for numerical analysis of viscoelastic Euler–Bernoulli beam with variable order fractional model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 361-376.
    6. Dang, Rongqi & Chen, Yiming, 2021. "Fractional modelling and numerical simulations of variable-section viscoelastic arches," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    7. Sun, Lin & Chen, Yiming, 2021. "Numerical analysis of variable fractional viscoelastic column based on two-dimensional Legendre wavelets algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Tabatabaei, S. Sepehr & Dehghan, Mohammad Reza & Talebi, Heidar Ali, 2022. "Real-time prediction of soft tissue deformation; a non-integer order modeling scheme and a practical verification for the theoretical concept," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:128:y:2019:i:c:p:275-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.