Coexistence of multiple attractors in the tree dynamics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2019.06.029
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bao, B.C. & Bao, H. & Wang, N. & Chen, M. & Xu, Q., 2017. "Hidden extreme multistability in memristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 102-111.
- Cabeza, Cecilia & Briozzo, Carlos A. & Garcia, Rodrigo & Freire, Joana G. & Marti, Arturo C. & Gallas, Jason A.C., 2013. "Periodicity hubs and wide spirals in a two-component autonomous electronic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 52(C), pages 59-65.
- Chen, M. & Feng, Y. & Bao, H. & Bao, B.C. & Yu, Y.J. & Wu, H.G. & Xu, Q., 2018. "State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 313-324.
- Attili, Basem S., 2009. "A direct method for the numerical computation of bifurcation points underlying symmetries," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1545-1551.
- Xu, Quan & Lin, Yi & Bao, Bocheng & Chen, Mo, 2016. "Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 186-200.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Fu, Shihui & Liu, Yuan, 2020. "Complex dynamical behavior of modified MLC circuit," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Yunzhen & Liu, Zhong & Wu, Huagan & Chen, Shengyao & Bao, Bocheng, 2019. "Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 354-363.
- Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
- Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
- Colin Sokol Kuka & Yihua Hu & Quan Xu & James Chandler & Mohammed Alkahtani, 2021. "A Novel True Random Number Generator in Near Field Communication as Memristive Wireless Power Transmission," J, MDPI, vol. 4(4), pages 1-20, November.
- Yunzhen Zhang & Zhong Liu & Mo Chen & Huagan Wu & Shengyao Chen & Bocheng Bao, 2019. "Dimensionality Reduction Reconstitution for Extreme Multistability in Memristor-Based Colpitts System," Complexity, Hindawi, vol. 2019, pages 1-12, November.
- Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Mo Chen & Yang Feng & Han Bao & Bocheng Bao & Huagan Wu & Quan Xu, 2019. "Hybrid State Variable Incremental Integral for Reconstructing Extreme Multistability in Memristive Jerk System with Cubic Nonlinearity," Complexity, Hindawi, vol. 2019, pages 1-16, June.
- Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
- Huagan Wu & Han Bao & Quan Xu & Mo Chen, 2019. "Abundant Coexisting Multiple Attractors’ Behaviors in Three-Dimensional Sine Chaotic System," Complexity, Hindawi, vol. 2019, pages 1-11, December.
- Han Bao & Tao Jiang & Kaibin Chu & Mo Chen & Quan Xu & Bocheng Bao, 2018. "Memristor-Based Canonical Chua’s Circuit: Extreme Multistability in Voltage-Current Domain and Its Controllability in Flux-Charge Domain," Complexity, Hindawi, vol. 2018, pages 1-13, March.
- Bao, Bocheng & Zhang, Xi & Bao, Han & Wu, Pingye & Wu, Zhimin & Chen, Mo, 2019. "Dynamical effects of memristive load on peak current mode buck-boost switching converter," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 69-79.
- Zhang, Xin & Li, Chunbiao & Chen, Yudi & IU, Herbert H.C. & Lei, Tengfei, 2020. "A memristive chaotic oscillator with controllable amplitude and frequency," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Jeon, Junkee & Kim, Geonwoo, 2019. "An integral equation approach for optimal investment policies with partial reversibility," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 73-78.
- Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Ahmad Taher Azar & Ngo Mouelas Adele & Kammogne Soup Tewa Alain & Romanic Kengne & Fotsin Hilaire Bertrand, 2018. "Multistability Analysis and Function Projective Synchronization in Relay Coupled Oscillators," Complexity, Hindawi, vol. 2018, pages 1-12, January.
- Klapcsik, Kálmán & Hegedűs, Ferenc, 2017. "The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 198-208.
- Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- G. H. Kom & J. Kengne & J. R. Mboupda Pone & G. Kenne & A. B. Tiedeu, 2018. "Asymmetric Double Strange Attractors in a Simple Autonomous Jerk Circuit," Complexity, Hindawi, vol. 2018, pages 1-16, February.
- Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
- Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
More about this item
Keywords
Mulistability; Isospike diagram; Pspice simulation; Experimental searches; Chaotic robustness;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:70-82. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.