IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v125y2019icp88-96.html
   My bibliography  Save this article

Co-Ranking for nodes, layers and timestamps in multilayer temporal networks

Author

Listed:
  • Zhang, Ting
  • Zhang, Kun
  • Lv, Laishui
  • Bardou, Dalal

Abstract

Understanding the structure of multilayer temporal networks requires the evaluation of nodes importance, the relationship between them and the timestamps simultaneously. In this paper,we propose a parameters-free centrality algorithm referred to as Co-Rank. The proposed algorithm uses a sixth-order tensor to describe the multilayer temporal network which considers the inter-layer connections between the adjacent timestamps across different layers. After describing the multilayer temporal network, the next step is to build and solve a set of tensor equations following the mutual relationships to get the centrality. The existence of the centrality metric is formally proven, and the convergence of the Co-Rank is also shown so that it can be effectively applied for the ranking. The results of experiments on synthetic and real-world networks show the effectiveness of our proposed algorithm.

Suggested Citation

  • Zhang, Ting & Zhang, Kun & Lv, Laishui & Bardou, Dalal, 2019. "Co-Ranking for nodes, layers and timestamps in multilayer temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 88-96.
  • Handle: RePEc:eee:chsofr:v:125:y:2019:i:c:p:88-96
    DOI: 10.1016/j.chaos.2019.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919301870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Gao, Shuai & Ma, Jun & Chen, Zhumin & Wang, Guanghui & Xing, Changming, 2014. "Ranking the spreading ability of nodes in complex networks based on local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 130-147.
    3. Pietro Panzarasa & Tore Opsahl & Kathleen M. Carley, 2009. "Patterns and dynamics of users' behavior and interaction: Network analysis of an online community," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(5), pages 911-932, May.
    4. Manlio De Domenico & Albert Solé-Ribalta & Elisa Omodei & Sergio Gómez & Alex Arenas, 2015. "Ranking in interconnected multilayer networks reveals versatile nodes," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Jiang, Jiu-Lei & Fang, Hui & Li, Sheng-Qing & Li, Wei-Min, 2022. "Identifying important nodes for temporal networks based on the ASAM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    3. Salavati, Chiman & Abdollahpouri, Alireza & Manbari, Zhaleh, 2018. "BridgeRank: A novel fast centrality measure based on local structure of the network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 635-653.
    4. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    5. Ma, Tinghuai & Yue, Mingliang & Qu, Jingjing & Tian, Yuan & Al-Dhelaan, Abdullah & Al-Rodhaan, Mznah, 2018. "PSPLPA: Probability and similarity based parallel label propagation algorithm on spark," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 366-378.
    6. Ullah, Farman & Lee, Sungchang, 2017. "Identification of influential nodes based on temporal-aware modeling of multi-hop neighbor interactions for influence spread maximization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 968-985.
    7. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    8. Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
    9. Liu, Qiang & Zhu, Yu-Xiao & Jia, Yan & Deng, Lu & Zhou, Bin & Zhu, Jun-Xing & Zou, Peng, 2018. "Leveraging local h-index to identify and rank influential spreaders in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 379-391.
    10. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    11. Xiaojian Ma & Yinghong Ma, 2019. "The Local Triangle Structure Centrality Method to Rank Nodes in Networks," Complexity, Hindawi, vol. 2019, pages 1-16, January.
    12. Lv, Zhiwei & Zhao, Nan & Xiong, Fei & Chen, Nan, 2019. "A novel measure of identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 488-497.
    13. Zhu, Canshi & Wang, Xiaoyang & Zhu, Lin, 2017. "A novel method of evaluating key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 43-50.
    14. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    16. De Masi, G. & Giovannetti, G. & Ricchiuti, G., 2013. "Network analysis to detect common strategies in Italian foreign direct investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1202-1214.
    17. Hyuk-Soo Kwon & Jihong Lee & Sokbae Lee & Ryungha Oh, 2022. "Knowledge spillovers and patent citations: trends in geographic localization, 1976–2015," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 31(3), pages 123-147, April.
    18. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    19. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    20. Tao, Qizhi & Li, Haoyu & Wu, Qun & Zhang, Ting & Zhu, Yingjun, 2019. "The dark side of board network centrality: Evidence from merger performance," Journal of Business Research, Elsevier, vol. 104(C), pages 215-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:125:y:2019:i:c:p:88-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.