IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v118y2019icp328-336.html
   My bibliography  Save this article

Bifurcation analysis of a magnetically supported rigid rotor in auxiliary bearings

Author

Listed:
  • Liu, Xijuan
  • Liu, Yun
  • Wang, Shuguo
  • Yan, Huijie
  • Liao, Pengtai

Abstract

The stability and bifurcation behavior of a kind of active magnetic bearing rotor are investigated in this paper. The analysis is carried out both analytically and numerically. It is found that a Hopf bifurcation occurs in the system by using center manifold and normal form. Numerical simulation is conducted to validate the theoretical predictions. More precisely, the dynamic characteristics of this system in two-dimensional parameter space are analyzed, the phase diagrams assist us to identify multi-attractor coexisting that makes the dynamical behaviors of the system become more enrich and complex. These results we represent can be useful in designing and selection of suitable operating parameters. As a result, the system can avoid the undesirable behavior.

Suggested Citation

  • Liu, Xijuan & Liu, Yun & Wang, Shuguo & Yan, Huijie & Liao, Pengtai, 2019. "Bifurcation analysis of a magnetically supported rigid rotor in auxiliary bearings," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 328-336.
  • Handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:328-336
    DOI: 10.1016/j.chaos.2018.11.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918310385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.11.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chengdai & Meng, Yijie & Cao, Jinde & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "New bifurcation results for fractional BAM neural network with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 31-44.
    2. Chen, Hsien-Keng & Ge, Zheng-Ming, 2005. "Bifurcations and chaos of a two-degree-of-freedom dissipative gyroscope," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 125-136.
    3. Cao, Yang, 2019. "Bifurcations in an Internet congestion control system with distributed delay," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 54-63.
    4. Huang, Chengdai & Cao, Jinde, 2017. "Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 262-275.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    3. Xu, Changjin & Liu, Zixin & Liao, Maoxin & Li, Peiluan & Xiao, Qimei & Yuan, Shuai, 2021. "Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 471-494.
    4. Wang, Aijuan & Liao, Xiaofeng & Dong, Tao, 2018. "Finite-time event-triggered synchronization for reaction–diffusion complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 111-120.
    5. Wang, Fei & Yang, Yongqing, 2018. "Intermittent synchronization of fractional order coupled nonlinear systems based on a new differential inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 142-152.
    6. Chu, Yu-Ming & Bekiros, Stelios & Zambrano-Serrano, Ernesto & Orozco-López, Onofre & Lahmiri, Salim & Jahanshahi, Hadi & Aly, Ayman A., 2021. "Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    7. Oliveira, José J., 2022. "Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Shuai Li & Chengdai Huang & Xinyu Song, 2019. "Bifurcation Based-Delay Feedback Control Strategy for a Fractional-Order Two-Prey One-Predator System," Complexity, Hindawi, vol. 2019, pages 1-13, April.
    9. Pei, Lijun & Wang, Shuo, 2019. "Dynamics and the periodic solutions of the delayed non-smooth Internet TCP-RED congestion control system via HB–AFT," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 689-702.
    10. Lu, Xiaoling & Sun, Weihua, 2024. "Control and synchronization of Julia sets of discrete fractional Ising models," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    11. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong, 2019. "Chaotic analysis and adaptive synchronization for a class of fractional order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 33-42.
    12. Liang Chen & Chengdai Huang & Haidong Liu & Yonghui Xia, 2019. "Anti-Synchronization of a Class of Chaotic Systems with Application to Lorenz System: A Unified Analysis of the Integer Order and Fractional Order," Mathematics, MDPI, vol. 7(6), pages 1-16, June.
    13. Peng, Qiu & Jian, Jigui, 2021. "Estimating the ultimate bounds and synchronization of fractional-order plasma chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Dong, Tao & Wang, Aijuan & Zhu, Huiyun & Liao, Xiaofeng, 2018. "Event-triggered synchronization for reaction–diffusion complex networks via random sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 454-462.
    15. Jian, Jigui & Wu, Kai & Wang, Baoxian, 2020. "Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Emad E. Mahmoud & M. Higazy & Turkiah M. Al-Harthi, 2019. "A New Nine-Dimensional Chaotic Lorenz System with Quaternion Variables: Complicated Dynamics, Electronic Circuit Design, Anti-Anticipating Synchronization, and Chaotic Masking Communication Applicatio," Mathematics, MDPI, vol. 7(10), pages 1-26, September.
    17. Jajarmi, Amin & Hajipour, Mojtaba & Baleanu, Dumitru, 2017. "New aspects of the adaptive synchronization and hyperchaos suppression of a financial model," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 285-296.
    18. Xu, Changjin & Liu, Zixin & Yao, Lingyun & Aouiti, Chaouki, 2021. "Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    19. Tang, Xiaosong, 2022. "Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 420-429.
    20. Weiwei Zhang & Jinde Cao & Ahmed Alsaedi & Fuad Eid S. Alsaadi, 2017. "Synchronization of Time Delayed Fractional Order Chaotic Financial System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-5, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:328-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.