IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v117y2018icp68-75.html
   My bibliography  Save this article

Stokes’ first problem for heated flat plate with Atangana–Baleanu fractional derivative

Author

Listed:
  • Sene, Ndolane

Abstract

In this paper, we investigate on the exact solutions of the Stokes’ first problem for generalized second grade fluid with a new fractional derivative operator. The Riemann–Liouville and the Caputo fractional derivative are substituted by the Atangana–Baleanu fractional derivative in the Stokes’ first fractional differential equation. With the Laplace transform given by the Atangana–Baleanu fractional derivative operator, we give for the Stokes’ first fractional differential equations the exact solutions for the velocity and temperature field. The Fourier sine transform and the Laplace transform will be used to get the exact solutions of the Stokes’ first fractional differential equations. The solutions of the Stokes’ first differential equations for a viscous Newtonian fluid, as well as those corresponding to a second grade fluid, are obtained in limiting cases, and an approach with the graphical surfaces representations for the exact solutions is proposed.

Suggested Citation

  • Sene, Ndolane, 2018. "Stokes’ first problem for heated flat plate with Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 68-75.
  • Handle: RePEc:eee:chsofr:v:117:y:2018:i:c:p:68-75
    DOI: 10.1016/j.chaos.2018.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918306568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    2. Atangana, Abdon & Gómez-Aguilar, J.F., 2018. "Fractional derivatives with no-index law property: Application to chaos and statistics," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 516-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Fall, Aliou Niang & Ndiaye, Seydou Nourou & Sene, Ndolane, 2019. "Black–Scholes option pricing equations described by the Caputo generalized fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 108-118.
    3. Mansal, Fulgence & Sene, Ndolane, 2020. "Analysis of fractional fishery model with reserve area in the context of time-fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Sene, Ndolane, 2020. "Second-grade fluid model with Caputo–Liouville generalized fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. Sene, Ndolane & Abdelmalek, Karima, 2019. "Analysis of the fractional diffusion equations described by Atangana-Baleanu-Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 158-164.
    6. Sene, Ndolane, 2020. "SIR epidemic model with Mittag–Leffler fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Sachin & Pandey, Prashant, 2020. "Quasi wavelet numerical approach of non-linear reaction diffusion and integro reaction-diffusion equation with Atangana–Baleanu time fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    4. Al-khedhairi, A. & Matouk, A.E. & Khan, I., 2019. "Chaotic dynamics and chaos control for the fractional-order geomagnetic field model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 390-401.
    5. Alkahtani, Badr Saad T., 2018. "Modeling the transmission dynamics of flagellated protozoan parasite with Atangana–Baleanu derivative: Application of 3/8 Simpson and Boole’s numerical rules for fractional integral," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 212-223.
    6. Shoaib, Muhammad & Abbasi, Aqsa Zafar & Raja, Muhammad Asif Zahoor & Nisar, Kottakkaran Sooppy, 2022. "A design of predictive computational network for the analysis of fractional epidemical predictor-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Kumar, Sachin & Pandey, Prashant, 2020. "A Legendre spectral finite difference method for the solution of non-linear space-time fractional Burger’s–Huxley and reaction-diffusion equation with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Alkahtani, Badr Saad T., 2018. "Numerical analysis of dissipative system with noise model with the Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 239-248.
    9. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    10. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Tassaddiq, Asifa, 2019. "MHD flow of a fractional second grade fluid over an inclined heated plate," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 341-346.
    12. Panda, Sumati Kumari & Ravichandran, C. & Hazarika, Bipan, 2021. "Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Koca, Ilknur, 2018. "Efficient numerical approach for solving fractional partial differential equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 278-286.
    14. Alzahrani, E.O. & Khan, M.A., 2018. "Modeling the dynamics of Hepatitis E with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 287-301.
    15. Koca, Ilknur, 2019. "Modeling the heat flow equation with fractional-fractal differentiation," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 83-91.
    16. Avcı, Derya & Yetim, Aylin, 2019. "Cauchy and source problems for an advection-diffusion equation with Atangana–Baleanu derivative on the real line," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 361-365.
    17. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Pritam, Kocherlakota Satya & Sugandha, & Mathur, Trilok & Agarwal, Shivi, 2021. "Underlying dynamics of crime transmission with memory," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    19. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    20. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:117:y:2018:i:c:p:68-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.