On the solution of time-fractional KdV–Burgers equation using Petrov–Galerkin method for propagation of long wave in shallow water
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2018.09.046
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Qi, 2008. "Homotopy perturbation method for fractional KdV-Burgers equation," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 843-850.
- Gupta, A.K. & Saha Ray, S., 2017. "On the solitary wave solution of fractional Kudryashov–Sinelshchikov equation describing nonlinear wave processes in a liquid containing gas bubbles," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 1-12.
- Helal, M.A. & Mehanna, M.S., 2006. "A comparison between two different methods for solving KdV–Burgers equation," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 320-326.
- Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
- Seyma Tuluce Demiray & Yusuf Pandir & Hasan Bulut, 2014. "Generalized Kudryashov Method for Time-Fractional Differential Equations," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-13, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kudryashov, Nikolay A., 2021. "Generalized Hermite polynomials for the Burgers hierarchy and point vortices," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cveticanin, L., 2009. "Application of homotopy-perturbation to non-linear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 221-228.
- Biazar, J. & Eslami, M. & Aminikhah, H., 2009. "Application of homotopy perturbation method for systems of Volterra integral equations of the first kind," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3020-3026.
- Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.
- Ramos, J.I., 2009. "Generalized decomposition methods for nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1078-1084.
- Chai, Zhenhua & Shi, Baochang & Zheng, Lin, 2008. "A unified lattice Boltzmann model for some nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 874-882.
- Lai, Huilin & Ma, Changfeng, 2009. "Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1405-1412.
- Abdel-Halim Hassan, I.H., 2008. "Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 53-65.
- Biazar, J. & Ghazvini, H., 2009. "He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 770-777.
- Yusufoğlu (Agadjanov), Elcin, 2009. "Improved homotopy perturbation method for solving Fredholm type integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 28-37.
- Yan, Jingye & Zhang, Hong & Liu, Ziyuan & Song, Songhe, 2020. "Two novel linear-implicit momentum-conserving schemes for the fractional Korteweg-de Vries equation," Applied Mathematics and Computation, Elsevier, vol. 367(C).
- Shumaila Javeed & Dumitru Baleanu & Asif Waheed & Mansoor Shaukat Khan & Hira Affan, 2019. "Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations," Mathematics, MDPI, vol. 7(1), pages 1-14, January.
- Saka, Bülent, 2009. "Cosine expansion-based differential quadrature method for numerical solution of the KdV equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2181-2190.
More about this item
Keywords
26A33; 35G25; 35R11; 35Q35; 42C40;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:376-380. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.