IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v103y2017icp588-595.html
   My bibliography  Save this article

Detecting outliers in complex nonlinear systems controlled by predictive control strategy

Author

Listed:
  • Wang, Biao
  • Mao, Zhizhong
  • Huang, Keke

Abstract

Detecting outliers in complicated nonlinear systems that are controlled by model predictive control is a significant work for engineering applications. Based on the features of data in practical systems, we propose a one-class classification ensemble method incorporating the notion of Feature Subspace with Bagging. Clustering and PCA (Principal Component Analysis) are integrated to obtain a more informative feature space, where Feature subspaces and bootstrap replications are implemented orderly to generate more accuracy and diverse base learners. A detector is constructed based on the above methodology, and a model updating strategy is also provided. By means of comparison with competitive methods, the effectiveness of the proposed detector has been verified.

Suggested Citation

  • Wang, Biao & Mao, Zhizhong & Huang, Keke, 2017. "Detecting outliers in complex nonlinear systems controlled by predictive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 588-595.
  • Handle: RePEc:eee:chsofr:v:103:y:2017:i:c:p:588-595
    DOI: 10.1016/j.chaos.2017.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917303089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hsien-Keng, 2005. "Global chaos synchronization of new chaotic systems via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1245-1251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Biao & Mao, Zhizhong & Huang, Keke, 2019. "Detecting outliers for complex nonlinear systems with dynamic ensemble learning," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 98-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    2. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    3. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    4. Chen, Hsien-Keng, 2005. "Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1049-1056.
    5. Singh, Piyush Pratap & Singh, Jay Prakash & Roy, B.K., 2014. "Synchronization and anti-synchronization of Lu and Bhalekar–Gejji chaotic systems using nonlinear active control," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 31-39.
    6. Park, Ju H., 2005. "Chaos synchronization of a chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 579-584.
    7. Lei, Youming & Xu, Wei & Shen, Jianwei, 2007. "Robust synchronization of chaotic non-autonomous systems using adaptive-feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 371-379.
    8. Sun, Yeong-Jeu, 2009. "A simple observer of the generalized Chen chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1641-1644.
    9. Kuetche Mbe, E.S. & Fotsin, H.B. & Kengne, J. & Woafo, P., 2014. "Parameters estimation based adaptive Generalized Projective Synchronization (GPS) of chaotic Chua’s circuit with application to chaos communication by parametric modulation," Chaos, Solitons & Fractals, Elsevier, vol. 61(C), pages 27-37.
    10. Chen, Heng-Hui, 2009. "Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 466-473.
    11. Sun, Yeong-Jeu, 2009. "Robust tracking control of uncertain Duffing–Holmes control systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1282-1287.
    12. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Agiza, H.N. & Matouk, A.E., 2006. "Adaptive synchronization of Chua’s circuits with fully unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 219-227.
    14. Chen, Juhn-Horng, 2008. "Controlling chaos and chaotification in the Chen–Lee system by multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 843-852.
    15. Zhang, Qunjiao & Lu, Jun-an, 2008. "Chaos synchronization of a new chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 175-179.
    16. Yang, Li-Xin & Chu, Yan-Dong & Zhang, Jian-Gang & Li, Xian-Feng, 2009. "Chaos synchronization of coupled hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 724-730.
    17. Lei, Youming & Xu, Wei & Shen, Jianwei & Fang, Tong, 2006. "Global synchronization of two parametrically excited systems using active control," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 428-436.
    18. J. Humberto Pérez-Cruz, 2018. "Stabilization and Synchronization of Uncertain Zhang System by Means of Robust Adaptive Control," Complexity, Hindawi, vol. 2018, pages 1-19, December.
    19. Zhang, Gang & Liu, Zengrong & Ma, Zhongjun, 2007. "Generalized synchronization of different dimensional chaotic dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 773-779.
    20. Li, Damei & Wang, Pei & Lu, Jun-an, 2009. "Some synchronization strategies for a four-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2553-2559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:103:y:2017:i:c:p:588-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.