IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v102y2017icp387-395.html
   My bibliography  Save this article

A search for a spectral technique to solve nonlinear fractional differential equations

Author

Listed:
  • Turalska, Malgorzata
  • West, Bruce J.

Abstract

A spectral decomposition method is used to obtain solutions to a class of nonlinear differential equations. We extend this approach to the analysis of the fractional form of these equations and demonstrate the method by applying it to the fractional Riccati equation, the fractional logistic equation and a fractional cubic equation. The solutions reduce to those of the ordinary nonlinear differential equations, when the order of the fractional derivative is α=1. The exact analytic solutions to the fractional nonlinear differential equations had not been previously known, so we evaluate how well the derived solutions satisfy the corresponding fractional dynamic equations. In the three cases we find a small, apparently generic, systematic error that we are not able to fully interpret.

Suggested Citation

  • Turalska, Malgorzata & West, Bruce J., 2017. "A search for a spectral technique to solve nonlinear fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 387-395.
  • Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:387-395
    DOI: 10.1016/j.chaos.2017.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. West, Bruce J., 2015. "Exact solution to fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 103-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izadi, Mohammad & Srivastava, H.M., 2021. "Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Mousavi, Yashar & Alfi, Alireza, 2018. "Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 202-215.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moghaddam, B.P. & Machado, J.A.T. & Behforooz, H., 2017. "An integro quadratic spline approach for a class of variable-order fractional initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 354-360.
    2. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    3. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    4. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Logistic map with memory from economic model," Papers 1712.09092, arXiv.org.
    5. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    6. Area, I. & Nieto, J.J., 2021. "Power series solution of the fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    7. Ortigueira, Manuel & Bengochea, Gabriel, 2017. "A new look at the fractionalization of the logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 554-561.
    8. Vasily E. Tarasov, 2020. "Exact Solutions of Bernoulli and Logistic Fractional Differential Equations with Power Law Coefficients," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
    9. D’Ovidio, Mirko & Loreti, Paola & Sarv Ahrabi, Sima, 2018. "Modified fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 818-824.
    10. D’Ovidio, Mirko & Loreti, Paola, 2018. "Solutions of fractional logistic equations by Euler’s numbers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1081-1092.
    11. Tarasova, Valentina V. & Tarasov, Vasily E., 2017. "Logistic map with memory from economic model," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 84-91.
    12. Doménech-Carbó, Antonio & Doménech-Casasús, Clara, 2021. "The evolution of COVID-19: A discontinuous approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    13. Area, Iván & Losada, Jorge & Nieto, Juan J., 2016. "A note on the fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 182-187.
    14. Doménech-Carbó, Antonio, 2019. "Rise and fall of historic tram networks: Logistic approximation and discontinuous events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 315-323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:387-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.