IDEAS home Printed from https://ideas.repec.org/a/eee/bushor/v63y2020i3p325-337.html
   My bibliography  Save this article

Assessing data quality: A managerial call to action

Author

Listed:
  • Nagle, Tadhg
  • Redman, Tom
  • Sammon, David

Abstract

While awareness of data quality has increased in recent years, there have been very few studies on the actual level of data quality within organizations. This article outlines the analysis of 75 data quality assessments collected over the course of 2 years from a wide range of organizations, data sets, and business processes. The results reveal that data is in far worse shape than most managers realize. On average, 47% of recently created data records have at least one critical error. High-quality data is the exception, with only 3% of the DQ scores rated acceptable (≥97%). Indeed, the results suggest an unhealthy organizational tolerance of bad data and underscore the magnitude of improvement organizations need to make in order to be truly effective in the knowledge economy. By providing a unique insight and benchmark for data quality practitioners, this article serves as a call-to-action for all organizations—regardless of size and type—to determine their level of data quality. Finally, we set out a typology that presents a categorical scheme to promote preemptive actions against the most frequent types of data error.

Suggested Citation

  • Nagle, Tadhg & Redman, Tom & Sammon, David, 2020. "Assessing data quality: A managerial call to action," Business Horizons, Elsevier, vol. 63(3), pages 325-337.
  • Handle: RePEc:eee:bushor:v:63:y:2020:i:3:p:325-337
    DOI: 10.1016/j.bushor.2020.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0007681320300069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.bushor.2020.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqi Zang & Jiamei Zhao & Wenchao Jiang & Tong Zhao, 2024. "Advanced Linguistic Complex T-Spherical Fuzzy Dombi-Weighted Power-Partitioned Heronian Mean Operator and Its Application for Emergency Information Quality Assessment," Sustainability, MDPI, vol. 16(7), pages 1-36, April.
    2. Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael, 2022. "The perils of working with big data, and a SMALL checklist you can use to recognize them," Business Horizons, Elsevier, vol. 65(4), pages 481-492.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    2. Aaltonen, Aleksi Ville & Alaimo, Cristina & Kallinikos, Jannis, 2021. "The making of data commodities: data analytics as an embedded process," LSE Research Online Documents on Economics 110296, London School of Economics and Political Science, LSE Library.
    3. Lidong Wang & Cheryl Ann Alexander, 2015. "Big Data Driven Supply Chain Management and Business Administration," American Journal of Economics and Business Administration, Science Publications, vol. 7(2), pages 60-67, June.
    4. Viet, Nguyen Quoc & Behdani, Behzad & Bloemhof, Jacqueline, 2018. "Value of Information to Improve Daily Operations in High-Density Logistics," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(1), January.
    5. Ray Qing Cao & Dara G. Schniederjans & Vicky Ching Gu, 2021. "Stakeholder sentiment in service supply chains: big data meets agenda-setting theory," Service Business, Springer;Pan-Pacific Business Association, vol. 15(1), pages 151-175, March.
    6. Akhtar, Pervaiz & Khan, Zaheer & Tarba, Shlomo & Jayawickrama, Uchitha, 2018. "The Internet of Things, dynamic data and information processing capabilities, and operational agility," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 307-316.
    7. Folajimi Ashiru & Franklin Nakpodia & Jacqueline J You, 2023. "Adapting emerging digital communication technologies for resilience: evidence from Nigerian SMEs," Annals of Operations Research, Springer, vol. 327(2), pages 795-823, August.
    8. Pan Liu & Shu-ping Yi, 2018. "Investment decision-making and coordination of a three-stage supply chain considering Data Company in the Big Data era," Annals of Operations Research, Springer, vol. 270(1), pages 255-271, November.
    9. Whitaker, Stephan D., 2018. "Big Data versus a survey," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 285-296.
    10. Benjamin T. Hazen & Joseph B. Skipper & Christopher A. Boone & Raymond R. Hill, 2018. "Back in business: operations research in support of big data analytics for operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 201-211, November.
    11. Daniel Wojtkowiak & Piotr Cyplik, 2020. "Operational Excellence within Sustainable Development Concept-Systematic Literature Review," Sustainability, MDPI, vol. 12(19), pages 1-13, September.
    12. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    13. Changchun Zhu & Jianguo Du & Fakhar Shahzad & Muhammad Umair Wattoo, 2022. "Environment Sustainability Is a Corporate Social Responsibility: Measuring the Nexus between Sustainable Supply Chain Management, Big Data Analytics Capabilities, and Organizational Performance," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    14. César Martínez-Olvera & Jaime Mora-Vargas, 2019. "A Comprehensive Framework for the Analysis of Industry 4.0 Value Domains," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
    15. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    16. Patrucco, Andrea S. & Marzi, Giacomo & Trabucchi, Daniel, 2023. "The role of absorptive capacity and big data analytics in strategic purchasing and supply chain management decisions," Technovation, Elsevier, vol. 126(C).
    17. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Roubaud, David & Fosso Wamba, Samuel & Giannakis, Mihalis & Foropon, Cyril, 2019. "Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain," International Journal of Production Economics, Elsevier, vol. 210(C), pages 120-136.
    18. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    19. Zhong, Ray Y. & Huang, George Q. & Lan, Shulin & Dai, Q.Y. & Chen, Xu & Zhang, T., 2015. "A big data approach for logistics trajectory discovery from RFID-enabled production data," International Journal of Production Economics, Elsevier, vol. 165(C), pages 260-272.
    20. Maya Vachkova & Arsalan Ghouri & Haidy Ashour & Normalisa Binti Md Isa & Gregory Barnes, 2023. "Big data and predictive analytics and Malaysian micro-, small and medium businesses," SN Business & Economics, Springer, vol. 3(8), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:bushor:v:63:y:2020:i:3:p:325-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/bushor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.