IDEAS home Printed from https://ideas.repec.org/a/eee/beexfi/v43y2024ics2214635024000819.html
   My bibliography  Save this article

Complex non-linear relationship between conventional and green bonds: Insights amidst COVID-19 and the RU–UA conflict

Author

Listed:
  • Kojić, Milena
  • Mitić, Petar
  • Schlüter, Stephan
  • Rakić, Slobodan

Abstract

In times of crisis, such as global pandemics or conflicts, investors’ preference between green and conventional bonds may lean towards the latter due to increased risk aversion and a focus on short-term stability. However, some investors motivated by increased awareness of sustainability issues may maintain or increase their allocation to green bonds, seeing them as an opportunity for long-term resilience and sustainable investing. We use multifractal detrended cross-correlation analysis, wavelet coherence, and copula-based dependence analysis to examine the complex relationship between the S&P Green Bond Index and the S&P 500 Bond Index. The results indicate the presence of multifractal cross-correlations, the strength of which is most pronounced in times of crisis, especially in the post-COVID-19 period. The wavelet-based analysis also detects the COVID-19 break and shows significant interdependence at all frequency levels after the RU–UA conflict. The copula-based correlation values exhibit a distinct oscillating pattern over time, characterized by an initial break coinciding with the impact of COVID-19. In light of these findings on the impact of COVID-19 and the RU–UA conflict, we have included the Geopolitical Risk Index in our analysis to better understand how geopolitical tensions and conflicts influence the observed interdependence and to gain insight into how changes in the global risk environment affect both bond market dynamics. Overall, the results of this study provide insights into the interconnectedness between conventional and green bond markets and highlight potential spillover effects and systemic risks in an increasingly complex financial landscape.

Suggested Citation

  • Kojić, Milena & Mitić, Petar & Schlüter, Stephan & Rakić, Slobodan, 2024. "Complex non-linear relationship between conventional and green bonds: Insights amidst COVID-19 and the RU–UA conflict," Journal of Behavioral and Experimental Finance, Elsevier, vol. 43(C).
  • Handle: RePEc:eee:beexfi:v:43:y:2024:i:c:s2214635024000819
    DOI: 10.1016/j.jbef.2024.100966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214635024000819
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jbef.2024.100966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Lahmiri, Salim, 2017. "Multifractal analysis of Moroccan family business stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 183-191.
    3. Dong, Xiyong & Xiong, Youlin & Nie, Siyue & Yoon, Seong-Min, 2023. "Can bonds hedge stock market risks? Green bonds vs conventional bonds," Finance Research Letters, Elsevier, vol. 52(C).
    4. Matthias Fischer & Christian Kock & Stephan Schluter & Florian Weigert, 2009. "An empirical analysis of multivariate copula models," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 839-854.
    5. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Upside-Downside Multifractality and Efficiency of Green Bonds: The Roles of Global Factors and COVID-19," Finance Research Letters, Elsevier, vol. 43(C).
    6. Guangxi Cao & Ling-Yun He & Jie Cao, 2018. "Multifractal Detrended Analysis Method and Its Application in Financial Markets," Springer Books, Springer, number 978-981-10-7916-0, March.
    7. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2023. "Multifractal cross-correlations between green bonds and financial assets," Finance Research Letters, Elsevier, vol. 53(C).
    8. Zhuang, Xiaoyang & Wei, Dan, 2022. "Asymmetric multifractality, comparative efficiency analysis of green finance markets: A dynamic study by index-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    9. Boubaker, Sabri & Goodell, John W. & Pandey, Dharen Kumar & Kumari, Vineeta, 2022. "Heterogeneous impacts of wars on global equity markets: Evidence from the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 48(C).
    10. Lee, Chi-Chuan & Yu, Chin-Hsien & Zhang, Jian, 2023. "Heterogeneous dependence among cryptocurrency, green bonds, and sustainable equity: New insights from Granger-causality in quantiles analysis," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 99-109.
    11. Milena Kojić & Petar Mitić & Marko Dimovski & Jelena Minović, 2021. "Multivariate Multifractal Detrending Moving Average Analysis of Air Pollutants," Mathematics, MDPI, vol. 9(7), pages 1-17, March.
    12. He, Ling-Yun & Chen, Shu-Peng, 2011. "Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 355-361.
    13. Liu, Li, 2014. "Cross-correlations between crude oil and agricultural commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 293-302.
    14. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    15. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    16. Kojić, Milena & Schlüter, Stephan & Mitić, Petar & Hanić, Aida, 2022. "Economy-environment nexus in developed European countries: Evidence from multifractal and wavelet analysis," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    17. Abakah, Emmanuel Joel Aikins & Tiwari, Aviral Kumar & Adekoya, Oluwasegun B. & Oteng-Abayie, Eric Fosu, 2023. "An analysis of the time-varying causality and dynamic correlation between green bonds and US gas prices," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    18. Shao, Wei & Wang, Jian, 2020. "Does the “ice-breaking” of South and North Korea affect the South Korean financial market?," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jian & Shao, Wei & Kim, Junseok, 2020. "Analysis of the impact of COVID-19 on the correlations between crude oil and agricultural futures," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Wang, Jian & Shao, Wei & Ma, Chenmin & Chen, Wenbing & Kim, Junseok, 2021. "Co-movements between Shanghai Composite Index and some fund sectors in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    3. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2023. "Multifractal cross-correlations between green bonds and financial assets," Finance Research Letters, Elsevier, vol. 53(C).
    4. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    6. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    7. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    8. Zhu, Pengfei & Tang, Yong & Wei, Yu & Dai, Yimin, 2019. "Portfolio strategy of International crude oil markets: A study based on multiwavelet denoising-integration MF-DCCA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    10. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    11. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
    12. Liu, Li, 2014. "Cross-correlations between crude oil and agricultural commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 293-302.
    13. repec:arx:papers:1501.02947 is not listed on IDEAS
    14. Kristoufek, Ladislav, 2015. "Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 194-205.
    15. Kristoufek, Ladislav, 2015. "Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 124-127.
    16. Kristoufek, Ladislav, 2014. "Measuring correlations between non-stationary series with DCCA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 291-298.
    17. Zebende, G.F. & da Silva, M.F. & Machado Filho, A., 2013. "DCCA cross-correlation coefficient differentiation: Theoretical and practical approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1756-1761.
    18. Vogl, Markus & Kojić, Milena, 2024. "Green cryptocurrencies versus sustainable investments dynamics: Exploration of multifractal multiscale analysis, multifractal detrended cross-correlations and nonlinear Granger causality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    19. Yuan, Naiming & Fu, Zuntao, 2014. "Different spatial cross-correlation patterns of temperature records over China: A DCCA study on different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 71-79.
    20. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    21. Liu, Li & Wang, Yudong, 2014. "Cross-correlations between spot and futures markets of nonferrous metals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 20-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:beexfi:v:43:y:2024:i:c:s2214635024000819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-behavioral-and-experimental-finance .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.